Masked Face Recognition Dataset and Application

In order to effectively prevent the spread of COVID-19 virus, almost everyone wears a mask during coronavirus epidemic. This almost makes conventional facial recognition technology ineffective in many cases, such as community access control, face access control, facial attendance, facial security checks at train stations, etc. Therefore, it is very urgent to improve the recognition performance of the existing face recognition technology on the masked faces. Most current advanced face recognition approaches are designed based on deep learning, which depend on a large number of face samples. However, at present, there are no publicly available masked face recognition datasets. To this end, this work proposes three types of masked face datasets, including Masked Face Detection Dataset (MFDD), Real-world Masked Face Recognition Dataset (RMFRD) and Simulated Masked Face Recognition Dataset (SMFRD). Among them, to the best of our knowledge, RMFRD is currently theworld's largest real-world masked face dataset. These datasets are freely available to industry and academia, based on which various applications on masked faces can be developed. The multi-granularity masked face recognition model we developed achieves 95% accuracy, exceeding the results reported by the industry. Our datasets are available at: this https URL.

[1]  Meng Yang,et al.  Large-Margin Softmax Loss for Convolutional Neural Networks , 2016, ICML.

[2]  Marwan Mattar,et al.  Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments , 2008 .

[3]  Mei Wang,et al.  Fair Loss: Margin-Aware Reinforcement Learning for Deep Face Recognition , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[4]  Tal Hassner,et al.  Regressing Robust and Discriminative 3D Morphable Models with a Very Deep Neural Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Shengcai Liao,et al.  Learning Face Representation from Scratch , 2014, ArXiv.

[6]  Bhiksha Raj,et al.  SphereFace: Deep Hypersphere Embedding for Face Recognition , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Stefanos Zafeiriou,et al.  ArcFace: Additive Angular Margin Loss for Deep Face Recognition , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).