Towards Mixed Gröbner Basis Algorithms: the Multihomogeneous and Sparse Case

One of the biggest open problems in computational algebra is the design of efficient algorithms for Gröbner basis computations that take into account the sparsity of the input polynomials. We can perform such computations in the case of unmixed polynomial systems, that is systems with polynomials having the same support, using the approach of Faugère, Spaenlehauer, and Svartz [ISSAC'14]. We present two algorithms for sparse Gröbner bases computations for mixed systems. The first one computes with mixed sparse systems and exploits the supports of the polynomials. Under regularity assumptions, it performs no reductions to zero. For mixed, square, and 0-dimensional multihomogeneous polynomial systems, we present a dedicated, and potentially more efficient, algorithm that exploits different algebraic properties that performs no reduction to zero. We give an explicit bound for the maximal degree appearing in the computations.

[1]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[2]  David Mumford,et al.  What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.

[3]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[4]  Bernd Sturmfels,et al.  On the Newton Polytope of the Resultant , 1994 .

[5]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[6]  B. Sturmfels,et al.  Multigraded Resultants of Sylvester Type , 1994 .

[7]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[8]  임종인,et al.  Gröbner Bases와 응용 , 1995 .

[9]  Ioannis Z. Emiris,et al.  On the Complexity of Sparse Elimination , 1996, J. Complex..

[10]  Tien Yien Li,et al.  Numerical solution of multivariate polynomial systems by homotopy continuation methods , 1997, Acta Numerica.

[11]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[12]  Rodney Y. Sharp,et al.  Local Cohomology: An Algebraic Introduction with Geometric Applications , 1998 .

[13]  N. Trung The Castelnuovo regularity of the Rees algebra and the associated graded ring , 1998 .

[14]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[15]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[16]  C. D'Andrea Macaulay style formulas for sparse resultants , 2001 .

[17]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[18]  Adam Van Tuyl,et al.  The regularity of points in multi-projective spaces , 2002 .

[19]  Diane Maclagan,et al.  Multigraded Castelnuovo-Mumford Regularity , 2003 .

[20]  Diane Maclagan,et al.  Uniform bounds on multigraded regularity , 2003 .

[21]  B. Sturmfels,et al.  Combinatorial Commutative Algebra , 2004 .

[22]  Azzouz Awane,et al.  Formes d'inertie et complexe de Koszul associés à des polynômes plurihomogènes , 2002, math/0211400.

[23]  Marc Chardin,et al.  SOME RESULTS AND QUESTIONS ON CASTELNUOVO-MUMFORD REGULARITY , 2005 .

[24]  Jessica Sidman,et al.  Multigraded Regularity: Syzygies and Fat Points , 2006 .

[25]  Frank Sottile,et al.  Fewnomial bounds for completely mixed polynomial systems , 2009 .

[26]  Nicolás Botbol,et al.  Implicitization of rational maps , 2011, 1109.1423.

[27]  Z. Teitler,et al.  TORIC VARIETIES , 2010 .

[28]  Carlos D'Andrea,et al.  Heights of varieties in multiprojective spaces and arithmetic Nullstellensatze , 2011, 1103.4561.

[29]  Mohab Safey El Din,et al.  Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity , 2010, J. Symb. Comput..

[30]  Marc Chardin,et al.  Castelnuovo Mumford Regularity with respect to multigraded ideals , 2011, 1107.2494.

[31]  Juan Sabia,et al.  Affine solution sets of sparse polynomial systems , 2011, J. Symb. Comput..

[32]  Jean-Charles Faugère,et al.  Sparse Gröbner bases: the unmixed case , 2014, ISSAC.

[33]  Jonathan D. Hauenstein,et al.  Multiprojective witness sets and a trace test , 2015, Advances in Geometry.

[34]  Jean-Charles Faugère,et al.  A survey on signature-based algorithms for computing Gröbner bases , 2017, J. Symb. Comput..

[35]  Éric Schost,et al.  Bit complexity for multi-homogeneous polynomial system solving - Application to polynomial minimization , 2016, J. Symb. Comput..

[36]  Jean-Charles Faugère,et al.  Bilinear Systems with Two Supports: Koszul Resultant Matrices, Eigenvalues, and Eigenvectors , 2018, ISSAC.