Towards Mixed Gröbner Basis Algorithms: the Multihomogeneous and Sparse Case
暂无分享,去创建一个
Jean-Charles Faugère | Elias P. Tsigaridas | Matías R. Bender | J. Faugère | E. Tsigaridas | M. R. Bender | M. Bender
[1] Daniel Lazard,et al. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.
[2] David Mumford,et al. What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.
[3] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[4] Bernd Sturmfels,et al. On the Newton Polytope of the Resultant , 1994 .
[5] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[6] B. Sturmfels,et al. Multigraded Resultants of Sylvester Type , 1994 .
[7] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[8] 임종인,et al. Gröbner Bases와 응용 , 1995 .
[9] Ioannis Z. Emiris,et al. On the Complexity of Sparse Elimination , 1996, J. Complex..
[10] Tien Yien Li,et al. Numerical solution of multivariate polynomial systems by homotopy continuation methods , 1997, Acta Numerica.
[11] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[12] Rodney Y. Sharp,et al. Local Cohomology: An Algebraic Introduction with Geometric Applications , 1998 .
[13] N. Trung. The Castelnuovo regularity of the Rees algebra and the associated graded ring , 1998 .
[14] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[15] Marc Giusti,et al. A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..
[16] C. D'Andrea. Macaulay style formulas for sparse resultants , 2001 .
[17] Jean Charles Faugère,et al. A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.
[18] Adam Van Tuyl,et al. The regularity of points in multi-projective spaces , 2002 .
[19] Diane Maclagan,et al. Multigraded Castelnuovo-Mumford Regularity , 2003 .
[20] Diane Maclagan,et al. Uniform bounds on multigraded regularity , 2003 .
[21] B. Sturmfels,et al. Combinatorial Commutative Algebra , 2004 .
[22] Azzouz Awane,et al. Formes d'inertie et complexe de Koszul associés à des polynômes plurihomogènes , 2002, math/0211400.
[23] Marc Chardin,et al. SOME RESULTS AND QUESTIONS ON CASTELNUOVO-MUMFORD REGULARITY , 2005 .
[24] Jessica Sidman,et al. Multigraded Regularity: Syzygies and Fat Points , 2006 .
[25] Frank Sottile,et al. Fewnomial bounds for completely mixed polynomial systems , 2009 .
[26] Nicolás Botbol,et al. Implicitization of rational maps , 2011, 1109.1423.
[27] Z. Teitler,et al. TORIC VARIETIES , 2010 .
[28] Carlos D'Andrea,et al. Heights of varieties in multiprojective spaces and arithmetic Nullstellensatze , 2011, 1103.4561.
[29] Mohab Safey El Din,et al. Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity , 2010, J. Symb. Comput..
[30] Marc Chardin,et al. Castelnuovo Mumford Regularity with respect to multigraded ideals , 2011, 1107.2494.
[31] Juan Sabia,et al. Affine solution sets of sparse polynomial systems , 2011, J. Symb. Comput..
[32] Jean-Charles Faugère,et al. Sparse Gröbner bases: the unmixed case , 2014, ISSAC.
[33] Jonathan D. Hauenstein,et al. Multiprojective witness sets and a trace test , 2015, Advances in Geometry.
[34] Jean-Charles Faugère,et al. A survey on signature-based algorithms for computing Gröbner bases , 2017, J. Symb. Comput..
[35] Éric Schost,et al. Bit complexity for multi-homogeneous polynomial system solving - Application to polynomial minimization , 2016, J. Symb. Comput..
[36] Jean-Charles Faugère,et al. Bilinear Systems with Two Supports: Koszul Resultant Matrices, Eigenvalues, and Eigenvectors , 2018, ISSAC.