Optimization Methods for Convolutional Sparse Coding

Sparse and convolutional constraints form a natural prior for many optimization problems that arise from physical processes. Detecting motifs in speech and musical passages, super-resolving images, compressing videos, and reconstructing harmonic motions can all leverage redundancies introduced by convolution. Solving problems involving sparse and convolutional constraints remains a difficult computational problem, however. In this paper we present an overview of convolutional sparse coding in a consistent framework. The objective involves iteratively optimizing a convolutional least-squares term for the basis functions, followed by an L1-regularized least squares term for the sparse coefficients. We discuss a range of optimization methods for solving the convolutional sparse coding objective, and the properties that make each method suitable for different applications. In particular, we concentrate on computational complexity, speed to {\epsilon} convergence, memory usage, and the effect of implied boundary conditions. We present a broad suite of examples covering different signal and application domains to illustrate the general applicability of convolutional sparse coding, and the efficacy of the available optimization methods.

[1]  José Carlos Príncipe,et al.  A fast proximal method for convolutional sparse coding , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[2]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[3]  Stephen A. Martucci,et al.  Symmetric convolution and the discrete sine and cosine transforms , 1993, IEEE Trans. Signal Process..

[4]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[5]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[6]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[7]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[8]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[9]  Anders P. Eriksson,et al.  Fast Convolutional Sparse Coding , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Thomas S. Huang,et al.  Image Super-Resolution Via Sparse Representation , 2010, IEEE Transactions on Image Processing.

[11]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[12]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[13]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[14]  Graham W. Taylor,et al.  Deconvolutional networks , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Mikkel N. Schmidt,et al.  Shift Invariant Sparse Coding of Image and Music Data , 2007 .

[16]  Bhaskar D. Rao,et al.  Latent Variable Bayesian Models for Promoting Sparsity , 2011, IEEE Transactions on Information Theory.

[17]  Y-Lan Boureau,et al.  Learning Convolutional Feature Hierarchies for Visual Recognition , 2010, NIPS.

[18]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[19]  Alfred O. Hero,et al.  Efficient learning of sparse, distributed, convolutional feature representations for object recognition , 2011, 2011 International Conference on Computer Vision.

[20]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[21]  Terrence J. Sejnowski,et al.  Coding Time-Varying Signals Using Sparse, Shift-Invariant Representations , 1998, NIPS.

[22]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[23]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[24]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[25]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[26]  Ajay Luthra,et al.  The H.264/AVC Advanced Video Coding standard: overview and introduction to the fidelity range extensions , 2004, SPIE Optics + Photonics.

[27]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[28]  David B. Dunson,et al.  Deep Learning with Hierarchical Convolutional Factor Analysis , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Aapo Hyvärinen,et al.  Natural Image Statistics - A Probabilistic Approach to Early Computational Vision , 2009, Computational Imaging and Vision.

[30]  Antonio Torralba,et al.  HOGgles: Visualizing Object Detection Features , 2013, 2013 IEEE International Conference on Computer Vision.