A Real-Time Method to Estimate Speed of Object Based on Object Detection and Optical Flow Calculation

In recent years Convolutional Neural Network (CNN) has been widely used in computer vision field and makes great progress in lots of contents like object detection and classification. Even so, combining Convolutional Neural Network, which means making multiple CNN frameworks working synchronously and sharing their output information, could figure out useful message that each of them cannot provide singly. Here we introduce a method to real-time estimate speed of object by combining two CNN: YOLOv2 and FlowNet. In every frame, YOLOv2 provides object size; object location and object type while FlowNet providing the optical flow of whole image. On one hand, object size and object location help to select out the object part of optical flow image thus calculating out the average optical flow of every object. On the other hand, object type and object size help to figure out the relationship between optical flow and true speed by means of optics theory and priori knowledge. Therefore, with these two key information, speed of object can be estimated. This method manages to estimate multiple objects at real-time speed by only using a normal camera even in moving status, whose error is acceptable in most application fields like manless driving or robot vision.

[1]  Thomas Brox,et al.  FlowNet: Learning Optical Flow with Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[2]  Ali Farhadi,et al.  YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[4]  Thomas B. Moeslund,et al.  Long-Term Occupancy Analysis Using Graph-Based Optimisation in Thermal Imagery , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Huei-Yung Lin,et al.  Automatic speed measurements of spherical objects using an off-the-shelf digital camera , 2005, IEEE International Conference on Mechatronics, 2005. ICM '05..

[6]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[9]  Daniel J. Dailey,et al.  Roadside camera motion detection for automated speed measurement , 2002, Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems.