AIRBORNE ACOUSTICS OF EXPLOSIVE VOLCANIC ERUPTIONS

A recently developed theoretical model of the airborne acoustic field from an explosive volcanic eruption of the Strombolian type is described in this article. The magma column is assumed to be a circular cylinder, which is open to the atmosphere at the top, and which opens into a large magma chamber below. The magma itself is treated as a fluid, and the surrounding bedrock is taken to be rigid. An explosive source near the base of the magma column excites the natural resonances of the conduit. These resonances result in displacement of the magma surface, which acts as a piston radiating sound into the atmosphere. The source is modeled in much the same way as an underwater explosion from a high-explosive chemical such as TNT, although in the case of the volcano the detonation mechanism is the ex-solution of magmatic gases under extremely high hydrostatic pressure. The new theory shows compelling agreement with airborne acoustic signatures that were recorded in July 1994 at a distance of 150 m from the western vent of Stromboli volcano, Italy. The theoretical and observed power spectra both display the following features: (1) four energetic peaks below 20 Hz, identified as the first four longitudinal resonances of the magma column; (2) a broad minimum around 30 Hz, interpreted as a source-depth effect, occurring because the source lay close to nulls in the fifth and sixth longitudinal resonances and thus failed to excite these modes; and (3) radial resonance peaks between 35 and 65 Hz. On the basis of the theory, an inversion of the acoustic data from Stromboli yields estimates of the depth (≈100 m) and radius (≈16 m) of the magma column as well as the depth (≈83 m), spectral shape and peak shock wave pressure (≈1 GPa) of the explosive source. Most of the parameters estimated from the acoustic inversion compare favorably with the known geometry and source characteristics of Stromboli.