Optimal design of artificial neural networks by a multi-objective strategy: groundwater level predictions
暂无分享,去创建一个
[1] Simon Haykin,et al. Neural Networks: A Comprehensive Foundation , 1998 .
[2] David Corne,et al. The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).
[3] Stefano Alvisi,et al. A short-term, pattern-based model for water-demand forecasting , 2006 .
[4] S. Thomas Ng,et al. A Modified Neural Network for Improving River Flow Prediction/Un Réseau de Neurones Modifié pour Améliorer la Prévision de L'Écoulement Fluvial , 2005 .
[5] A. Soldati,et al. Artificial neural network approach to flood forecasting in the River Arno , 2003 .
[6] Adam P. Piotrowski,et al. Are Artificial Neural Network Techniques Relevant for the Estimation of Longitudinal Dispersion Coefficient in Rivers , 2005 .
[7] Christian W. Dawson,et al. An artificial neural network approach to rainfall-runoff modelling , 1998 .
[8] C. Fonseca,et al. GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .
[9] Özgür Kişi,et al. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation / Prévision et estimation de la concentration en matières en suspension avec des perceptrons multi-couches et l’algorithme d’apprentissage de Levenberg-Marquardt , 2004 .
[10] Joos Vandewalle,et al. Modelling and forecasting of hydrological variables using artificial neural networks: the Kafue River sub-basin , 2003 .
[11] Roland K. Price,et al. A neural network model of rainfall-runoff using radial basis functions , 1996 .
[12] Kuolin Hsu,et al. Artificial Neural Network Modeling of the Rainfall‐Runoff Process , 1995 .
[13] David Hinkley,et al. Bootstrap Methods: Another Look at the Jackknife , 2008 .
[14] Kalyanmoy Deb,et al. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.
[15] U. C. Kothyari,et al. Artificial neural networks for daily rainfall—runoff modelling , 2002 .
[16] O. Ks. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation , 2004 .
[17] Charles Gide,et al. Cours d'économie politique , 1911 .
[18] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[19] R Govindaraju,et al. ARTIFICIAL NEURAL NETWORKS IN HYDROLOGY: II, HYDROLOGIC APPLICATIONS , 2000 .
[20] Robert J. Abrahart,et al. Using pruning algorithms and genetic algorithms to optimise network architectures and forecasting inputs in a neural network rainfall-runoff model , 1999 .
[21] Tiesong Hu,et al. A Modified Neural Network for Improving River Flow Prediction , 2005 .
[22] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[23] Gary B. Lamont,et al. Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.
[24] R. Fletcher. Practical Methods of Optimization , 1988 .
[25] Anthony W. Minns,et al. Subsymbolic methods for data mining in hydraulic engineering , 2000 .
[26] Lothar Thiele,et al. Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.
[27] Peter J. Fleming,et al. Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.
[28] Dragan Savic,et al. Single-objective vs. Multiobjective Optimisation for Integrated Decision Support , 2002 .
[29] K. Lam,et al. River flow time series prediction with a range-dependent neural network , 2001 .
[30] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[31] R. Abrahart,et al. Detection of conceptual model rainfall—runoff processes inside an artificial neural network , 2003 .
[32] Jaroslaw J. Napiorkowski,et al. Are artificial neural network techniques relevant for the estimation of longitudinal dispersion coefficient in rivers? / Les techniques de réseaux de neurones artificiels sont-elles pertinentes pour estimer le coefficient de dispersion longitudinale en rivières? , 2005 .
[33] Orazio Giustolisi,et al. Using a multi-objective genetic algorithm for SVM construction , 2006 .
[34] Zbigniew Michalewicz,et al. Evolutionary Computation 2 , 2000 .
[35] J. D. Schaffer,et al. Some experiments in machine learning using vector evaluated genetic algorithms (artificial intelligence, optimization, adaptation, pattern recognition) , 1984 .
[36] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[37] Peter J. Fleming,et al. Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.
[38] Vincenzo Simeone,et al. Rainfall decreasing and groundwater resources pauperizing in Southern Italy. , 2004 .
[39] Orazio Giustolisi,et al. Improving generalization of artificial neural networks in rainfall–runoff modelling / Amélioration de la généralisation de réseaux de neurones artificiels pour la modélisation pluie-débit , 2005 .
[40] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[41] Roland K. Price,et al. Managing uncertainty in hydrological models using complementary models , 2003 .
[42] Jason Smith,et al. Neural-Network Models of Rainfall-Runoff Process , 1995 .
[43] null null,et al. Artificial Neural Networks in Hydrology. II: Hydrologic Applications , 2000 .
[44] Orazio Giustolisi. Input–output dynamic neural networks simulating inflow–outflow phenomena in an urban hydrological basin , 2000 .
[45] Orazio Giustolisi. Sparse solution in training artificial neural networks , 2004, Neurocomputing.