A nodal high-order discontinuous Galerkin method for elastic wave propagation in arbitrary heterogeneous media

We present an extension of the nodal discontinuous Galerkin method for elastic wave propagation to high interpolation orders and arbitrary heterogeneous media. The high-order lagrangian interpolation is based on a set of nodes with excellent interpolation properties in the standard triangular element. In order to take into account highly variable geological media, another set of suitable quadrature points is used where the physical and mechanical properties of the medium are defined. We implement the methodology in a 2-D discontinuous Galerkin solver. First, a convergence study confirms the hp-convergence of the method in a smoothly varying elastic medium. Then, we show the advantages of the present methodology, compared to the classical one with constant properties within the elements, in terms of the complexity of the mesh generation process by analysing the seismic amplification of a soft layer over an elastic half-space. Finally, to verify the proposed methodology in a more complex and realistic configuration , we compare the simulation results with the ones obtained by the spectral element method for a sedimentary basin with a realistic gradient velocity profile. Satisfactory results are obtained even for the case where the computational mesh does not honour the strong impedance contrast between the basin bottom and the bedrock.

[1]  Romain Brossier,et al.  Modelling Seismic Wave Propagation for Geophysical Imaging , 2012 .

[2]  Emanuele Casarotti,et al.  Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes , 2011 .

[3]  David R. O'Hallaron,et al.  Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers , 1998 .

[4]  Mrinal K. Sen,et al.  The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion , 2008 .

[5]  J. Bielak,et al.  Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part II: Verification and Applications , 2001 .

[6]  Mrinal K. Sen,et al.  Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations , 2007 .

[7]  Chiara Smerzini,et al.  SPEED: SPectral Elements in Elastodynamics with Discontinuous Galerkin: a non‐conforming approach for 3D multi‐scale problems , 2013 .

[8]  F. Rapetti,et al.  Fekete-Gauss Spectral Elements for Incompressible Navier-Stokes Flows: The Two-Dimensional Case , 2013 .

[9]  Peter Moczo,et al.  Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals , 2009 .

[10]  Doriam Restrepo,et al.  Earthquake Ground‐Motion Simulation including Nonlinear Soil Effects under Idealized Conditions with Application to Two Case Studies , 2012 .

[11]  Jean-Pierre Vilotte,et al.  Triangular Spectral Element simulation of two-dimensional elastic wave propagation using unstructured triangular grids , 2006 .

[12]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .

[13]  S. P. Oliveira,et al.  Dispersion analysis of spectral element methods for elastic wave propagation , 2008 .

[14]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[15]  Martin Käser,et al.  Seismic waves in heterogeneous material: subcell resolution of the discontinuous Galerkin method , 2010 .

[16]  Jan S. Hesthaven,et al.  Stable Spectral Methods on Tetrahedral Elements , 1999, SIAM J. Sci. Comput..

[17]  Jeffrey L. Young,et al.  High‐order, leapfrog methodology for the temporally dependent Maxwell's equations , 2001 .

[18]  L. Fezoui,et al.  A high-order Discontinuous Galerkin method for the seismic wave propagation , 2009 .

[19]  Diego Mercerat,et al.  Triangular Spectral Element simulation of 2D elastic wave propagation using unstructured triangular grids , 2005 .

[20]  Martin Galis,et al.  The Finite-Difference Modelling of Earthquake Motions: Waves and Ruptures , 2014 .

[21]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[22]  Pierre-Yves Bard,et al.  The seismic response of sediment-filled valleys. Part 2. The case of incident P and SV waves , 1980 .

[23]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms , 2006 .

[24]  Mourad E. H. Ismail,et al.  Theory and Applications of Special Functions , 2005 .

[25]  J. Kristek,et al.  The Finite-Difference Modelling of Earthquake Motions: Basic mathematical-physical model , 2014 .

[26]  Jan S. Hesthaven,et al.  A pseudo-spectral scheme for the incompressible Navier-Stokes equations using unstructured nodal elements , 2000 .

[27]  M. Dumbser,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes — III. Viscoelastic attenuation , 2007 .

[28]  Francesca Rapetti,et al.  Spectral Element Methods on Unstructured Meshes: Comparisons and Recent Advances , 2006, J. Sci. Comput..

[29]  Jean Virieux,et al.  Dynamic non-planar crack rupture by a finite volume method , 2006 .

[30]  F. D. Martin,et al.  Verification of a Spectral-Element Method Code for the Southern California Earthquake Center LOH.3 Viscoelastic Case , 2011 .

[31]  Nathalie Glinsky,et al.  Analysis of a high-order space and time discontinuous Galerkin method for elastodynamic equations. Application to 3D wave propagation , 2015 .

[32]  Roberto Paolucci,et al.  Near-Fault Earthquake Ground-Motion Simulation in the Grenoble Valley by a High-Performance Spectral Element Code , 2009 .

[33]  Francisco J. Sánchez-Sesma,et al.  Seismic response of three-dimensional alluvial valleys for incident P, S, and Rayleigh waves , 1995 .

[34]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[35]  Géza Seriani,et al.  WAVE PROPAGATION MODELING IN HIGHLY HETEROGENEOUS MEDIA BY A POLY-GRID CHEBYSHEV SPECTRAL ELEMENT METHOD , 2012 .

[36]  E. Toro,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity , 2007 .

[37]  Martin Käser,et al.  Non-conforming hybrid meshes for efficient 2-D wave propagation using the Discontinuous Galerkin Method , 2011 .

[38]  Jianlin Wang,et al.  Three-dimensional nonlinear seismic ground motion modeling in basins , 2003 .

[39]  Ezio Faccioli,et al.  2d and 3D elastic wave propagation by a pseudo-spectral domain decomposition method , 1997 .

[40]  P. Comba,et al.  Part I. Theory , 2007 .

[41]  Jean-Pierre Vilotte,et al.  RegSEM: a versatile code based on the spectral element method to compute seismic wave propagation at the regional scale , 2012 .

[42]  C. Pelties,et al.  Regional wave propagation using the discontinuous Galerkin method , 2012 .

[43]  M. Kanao Seismic Waves - Research and Analysis , 2012 .

[44]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[45]  Jeroen Tromp,et al.  Spectral-element and adjoint methods in seismology , 2008 .

[46]  Roland Martin,et al.  WAVE PROPAGATION IN 2-D ELASTIC MEDIA USING A SPECTRAL ELEMENT METHOD WITH TRIANGLES AND QUADRANGLES , 2001 .

[47]  P. Bard,et al.  The two-dimensional resonance of sediment-filled valleys , 1985 .

[48]  Francisco J. Sánchez-Sesma,et al.  A 3D hp‐adaptive discontinuous Galerkin method for modeling earthquake dynamics , 2012 .

[49]  T. Koornwinder Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .

[50]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[51]  Stéphane Lanteri,et al.  A nodal discontinuous Galerkin method for site effects assessment in viscoelastic media—verification and validation in the Nice basin , 2014 .

[52]  Francesca Rapetti,et al.  Spectral element methods on unstructured meshes: which interpolation points? , 2010, Numerical Algorithms.

[53]  D. J. Manen,et al.  Introduction to the supplement on seismic modeling with applications to acquisition, processing, and interpretation , 2007 .

[54]  Mrinal K. Sen,et al.  Dispersion analysis of the spectral element method using a triangular mesh , 2012 .

[55]  Jean Virieux,et al.  3-D dynamic rupture simulations by a finite volume method , 2009 .

[56]  Francesca Rapetti,et al.  Dispersion analysis of triangle-based spectral element methods for elastic wave propagation , 2012, Numerical Algorithms.

[57]  George Em Karniadakis,et al.  A NEW TRIANGULAR AND TETRAHEDRAL BASIS FOR HIGH-ORDER (HP) FINITE ELEMENT METHODS , 1995 .

[58]  J. Virieux,et al.  An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling , 2010 .

[59]  Robert G. Owens,et al.  Spectral approximations on the triangle , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[60]  Philip J. Maechling,et al.  TeraShake2: Spontaneous Rupture Simulations of Mw 7.7 Earthquakes on the Southern San Andreas Fault , 2008 .

[61]  J. Bielak,et al.  Domain Reduction Method for Three-Dimensional Earthquake Modeling in Localized Regions, Part I: Theory , 2003 .

[62]  J. Kristek,et al.  The Finite-Difference Modelling of Earthquake Motions: Earthquake source , 2014 .

[63]  Michael Dumbser,et al.  Accurate Calculation of Fault-Rupture Models Using the High-Order Discontinuous Galerkin Method on Tetrahedral Meshes , 2007 .

[64]  M. Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes — II. The three-dimensional isotropic case , 2006 .

[65]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[66]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[67]  Michael Dumbser,et al.  An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - IV. Anisotropy , 2007 .

[68]  Mark A. Taylor,et al.  An Algorithm for Computing Fekete Points in the Triangle , 2000, SIAM J. Numer. Anal..

[69]  Tim Warburton,et al.  An explicit construction of interpolation nodes on the simplex , 2007 .