Preconditioning of complex symmetric linear systems with applications in optical tomography
暂无分享,去创建一个
Simon R. Arridge | Herbert Egger | Matthias Schlottbom | S. Arridge | H. Egger | Matthias Schlottbom
[1] Michael K. Ng,et al. Band-Toeplitz Preconditioned GMRES Iterations for Time-Dependent PDEs , 2003 .
[2] P. Halmos. Introduction to Hilbert Space: And the Theory of Spectral Multiplicity , 1998 .
[3] Marcus J. Grote,et al. Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..
[4] I. Babuska. Error-bounds for finite element method , 1971 .
[5] C. DeWitt-Morette,et al. Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .
[6] James Hardy Wilkinson,et al. Reduction of the symmetric eigenproblemAx=λBx and related problems to standard form , 1968 .
[7] D. Bertaccini. EFFICIENT PRECONDITIONING FOR SEQUENCES OF PARAMETRIC COMPLEX SYMMETRIC LINEAR SYSTEMS , 2004 .
[8] Mark F. Adams,et al. Algebraic Multigrid Methods for Direct Frequency Response Analyses in Solid Mechanics , 2007 .
[9] Walter Zulehner,et al. Nonstandard Norms and Robust Estimates for Saddle Point Problems , 2011, SIAM J. Matrix Anal. Appl..
[10] Cornelis Vuik,et al. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..
[11] Herbert Egger,et al. A MIXED VARIATIONAL FRAMEWORK FOR THE RADIATIVE TRANSFER EQUATION , 2012 .
[12] Kay Hameyer,et al. Algebraic multigrid for complex symmetric systems , 2000 .
[13] Cornelis W. Oosterlee,et al. Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..
[14] Zeng-Qi Wang,et al. Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .
[15] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[16] B. CHANG,et al. Spatial Multigrid for Isotropic Neutron Transport , 2007, SIAM J. Sci. Comput..
[17] Stephan Ramon Garcia,et al. Complex Symmetric Operators and Applications II , 2005 .
[18] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[19] Annamaria Mazzia,et al. Numerical performance of preconditioning techniques for the solution of complex sparse linear systems , 2002 .
[20] Barry Lee. Improved Multiple-Coarsening Methods for Sn Discretizations of the Boltzmann Equation , 2010, SIAM J. Sci. Comput..
[21] S. Arridge. Optical tomography in medical imaging , 1999 .
[22] Michael B. Giles,et al. Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .
[23] Roland W. Freund,et al. Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..
[24] S. Banach,et al. Théorie des opérations linéaires , 1932 .
[25] Jacques-Louis Lions,et al. Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .
[26] Martin Schweiger,et al. MULTILEVEL PRECONDITIONING FOR 3D LARGE-SCALE SOFT-FIELD MEDICAL APPLICATIONS MODELLING , 2006 .
[27] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[28] M. Benzi,et al. Block preconditioning of real-valued iterative algorithms for complex linear systems , 2007 .
[29] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[30] A. Bunse-Gerstner,et al. On a conjugate gradient-type method for solving complex symmetric linear systems , 1999 .
[31] Thomas A. Manteuffel,et al. A Moment-Parity Multigrid Preconditioner for the First-Order System Least-Squares Formulation of the Boltzmann Transport Equation , 2003, SIAM J. Sci. Comput..
[32] Jindřich Nečas,et al. Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle , 1961 .
[33] O. Axelsson,et al. Real valued iterative methods for solving complex symmetric linear systems , 2000 .
[34] Joachim Schöberl,et al. Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..
[35] David Day,et al. Solving Complex-Valued Linear Systems via Equivalent Real Formulations , 2001, SIAM J. Sci. Comput..
[36] S. Garcia. Approximate antilinear eigenvalue problems and related inequalities , 2008 .
[37] L. Richardson. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .
[38] Gilbert Helmberg,et al. Introduction to Spectral Theory in Hilbert Space , 1970 .
[39] Barry Lee. A Novel Multigrid Method for Sn Discretizations of the Mono-Energetic Boltzmann Transport Equation in the Optically Thick and Thin Regimes with Anisotropic Scattering, Part I , 2010, SIAM J. Sci. Comput..
[40] S. Reitzinger,et al. Algebraic multigrid for complex symmetric matrices and applications , 2003 .
[41] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations , 1993 .
[42] M. Enzi,et al. Block preconditioning of real-valued iterative algorithms for complex linear systems , 2008 .
[43] Simon R. Arridge,et al. A Finite Element Method for the Even-Parity Radiative Transfer Equation Using the PN Approximation , 2009 .
[44] E. Lewis,et al. Computational Methods of Neutron Transport , 1993 .