Preconditioning of complex symmetric linear systems with applications in optical tomography

We consider the numerical solution of linear systems of the form (A+i@kB)x=y, which arise in many applications, e.g., in time-harmonic acoustics, electromagnetics, or radiative transfer. We propose and analyze a class of preconditioners leading to complex symmetric iteration operators and investigate convergence of corresponding preconditioned iterative methods. Under mild assumptions on the operators A and B, we establish parameter and dimension independent convergence. The proposed methods are then applied to the solution of even-parity formulations of time-harmonic radiative transfer. For this application, we verify all assumptions required for our convergence analysis. The performance of the preconditioned iterations is then demonstrated by numerical tests supporting the theoretical results.

[1]  Michael K. Ng,et al.  Band-Toeplitz Preconditioned GMRES Iterations for Time-Dependent PDEs , 2003 .

[2]  P. Halmos Introduction to Hilbert Space: And the Theory of Spectral Multiplicity , 1998 .

[3]  Marcus J. Grote,et al.  Algebraic Multilevel Preconditioner for the Helmholtz Equation in Heterogeneous Media , 2009, SIAM J. Sci. Comput..

[4]  I. Babuska Error-bounds for finite element method , 1971 .

[5]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[6]  James Hardy Wilkinson,et al.  Reduction of the symmetric eigenproblemAx=λBx and related problems to standard form , 1968 .

[7]  D. Bertaccini EFFICIENT PRECONDITIONING FOR SEQUENCES OF PARAMETRIC COMPLEX SYMMETRIC LINEAR SYSTEMS , 2004 .

[8]  Mark F. Adams,et al.  Algebraic Multigrid Methods for Direct Frequency Response Analyses in Solid Mechanics , 2007 .

[9]  Walter Zulehner,et al.  Nonstandard Norms and Robust Estimates for Saddle Point Problems , 2011, SIAM J. Matrix Anal. Appl..

[10]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[11]  Herbert Egger,et al.  A MIXED VARIATIONAL FRAMEWORK FOR THE RADIATIVE TRANSFER EQUATION , 2012 .

[12]  Kay Hameyer,et al.  Algebraic multigrid for complex symmetric systems , 2000 .

[13]  Cornelis W. Oosterlee,et al.  Algebraic Multigrid Solvers for Complex-Valued Matrices , 2008, SIAM J. Sci. Comput..

[14]  Zeng-Qi Wang,et al.  Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .

[15]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[16]  B. CHANG,et al.  Spatial Multigrid for Isotropic Neutron Transport , 2007, SIAM J. Sci. Comput..

[17]  Stephan Ramon Garcia,et al.  Complex Symmetric Operators and Applications II , 2005 .

[18]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[19]  Annamaria Mazzia,et al.  Numerical performance of preconditioning techniques for the solution of complex sparse linear systems , 2002 .

[20]  Barry Lee Improved Multiple-Coarsening Methods for Sn Discretizations of the Boltzmann Equation , 2010, SIAM J. Sci. Comput..

[21]  S. Arridge Optical tomography in medical imaging , 1999 .

[22]  Michael B. Giles,et al.  Preconditioned iterative solution of the 2D Helmholtz equation , 2002 .

[23]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[24]  S. Banach,et al.  Théorie des opérations linéaires , 1932 .

[25]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[26]  Martin Schweiger,et al.  MULTILEVEL PRECONDITIONING FOR 3D LARGE-SCALE SOFT-FIELD MEDICAL APPLICATIONS MODELLING , 2006 .

[27]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[28]  M. Benzi,et al.  Block preconditioning of real-valued iterative algorithms for complex linear systems , 2007 .

[29]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[30]  A. Bunse-Gerstner,et al.  On a conjugate gradient-type method for solving complex symmetric linear systems , 1999 .

[31]  Thomas A. Manteuffel,et al.  A Moment-Parity Multigrid Preconditioner for the First-Order System Least-Squares Formulation of the Boltzmann Transport Equation , 2003, SIAM J. Sci. Comput..

[32]  Jindřich Nečas,et al.  Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle , 1961 .

[33]  O. Axelsson,et al.  Real valued iterative methods for solving complex symmetric linear systems , 2000 .

[34]  Joachim Schöberl,et al.  Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..

[35]  David Day,et al.  Solving Complex-Valued Linear Systems via Equivalent Real Formulations , 2001, SIAM J. Sci. Comput..

[36]  S. Garcia Approximate antilinear eigenvalue problems and related inequalities , 2008 .

[37]  L. Richardson The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam , 1911 .

[38]  Gilbert Helmberg,et al.  Introduction to Spectral Theory in Hilbert Space , 1970 .

[39]  Barry Lee A Novel Multigrid Method for Sn Discretizations of the Mono-Energetic Boltzmann Transport Equation in the Optically Thick and Thin Regimes with Anisotropic Scattering, Part I , 2010, SIAM J. Sci. Comput..

[40]  S. Reitzinger,et al.  Algebraic multigrid for complex symmetric matrices and applications , 2003 .

[41]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[42]  M. Enzi,et al.  Block preconditioning of real-valued iterative algorithms for complex linear systems , 2008 .

[43]  Simon R. Arridge,et al.  A Finite Element Method for the Even-Parity Radiative Transfer Equation Using the PN Approximation , 2009 .

[44]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .