High-pressure hydrogen storage performances of ZrFe2 based alloys with Mn, Ti, and V addition

[1]  D. Book,et al.  Development of a high-pressure Ti-Mn based hydrogen storage alloy for hydrogen compression , 2019, Renewable Energy.

[2]  L. Ouyang,et al.  Achieving high equilibrium pressure and low hysteresis of Zr–Fe based hydrogen storage alloy by Cr/V substitution , 2019, Journal of Alloys and Compounds.

[3]  Alastair D. Stuart,et al.  Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives , 2019, International Journal of Hydrogen Energy.

[4]  Chao Zhou,et al.  Achieving the dehydriding reversibility and elevating the equilibrium pressure of YFe2 alloy by partial Y substitution with Zr , 2018, International Journal of Hydrogen Energy.

[5]  Z. Yao,et al.  Effect of rare earth doping on the hydrogen storage performance of Ti 1.02 Cr 1.1 Mn 0.3 Fe 0.6 alloy for hybrid hydrogen storage application , 2018 .

[6]  Satya Sekhar Bhogilla,et al.  Design of a AB 2 -metal hydride cylindrical tank for renewable energy storage , 2017 .

[7]  Lixian Sun,et al.  Development of ZrFeV alloys for hybrid hydrogen storage system , 2016 .

[8]  G. Walker,et al.  Optimization of AB2 type alloy composition with superior hydrogen storage properties for stationary applications , 2015 .

[9]  Liquan Chen,et al.  Microstructures and hydrogen storage properties of ZrFe2.05−xVx (x = 0.05–0.20) alloys with high dissociation pressures for hybrid hydrogen storage vessel application , 2015 .

[10]  E. Pavlidou,et al.  Investigation of ZrFe2-type materials for metal hydride hydrogen compressor systems by substituting Fe with Cr or V , 2014 .

[11]  Asheesh Kumar,et al.  Improvement on the hydrogen storage properties of ZrFe2 Laves phase alloy by vanadium substitution , 2014 .

[12]  Bruno G. Pollet,et al.  Metal hydride hydrogen compressors: A review , 2014 .

[13]  C. Sánchez,et al.  Synthesis of hexagonal C14/C36 and cubic C15 ZrCr2 Laves phases and thermodynamic stability of their hydrides , 2011 .

[14]  V. Verbetsky,et al.  IMC hydrides with high hydrogen dissociation pressure , 2011 .

[15]  V. Verbetsky,et al.  Synthesis, properties and Mössbauer study of ZrFe2−xNix hydrides (x = 0.2–0.8) , 2011 .

[16]  V. Verbetsky,et al.  Hydrogen sorption properties of ZrFex (1.9 ≤ x ≤ 2.5) alloys , 2011 .

[17]  T. Maruyama,et al.  Effects of V content on hydrogen storage properties of V–Ti–Cr alloys with high desorption pressure , 2010 .

[18]  Xinhua Wang,et al.  A study on 70 MPa metal hydride hydrogen compressor , 2010 .

[19]  Shumao Wang,et al.  A study on crystal structure and chemical state of TiCrVMn hydrogen storage alloys during hydrogen absorption-desorption cycling , 2009 .

[20]  Choong-Nyeon Park,et al.  Influence of Mn or Mn plus Fe on the hydrogen storage properties of the Ti-Cr-V alloy , 2009 .

[21]  S. Agarwal,et al.  Correlation between the milling time and hydrogen-storage properties of nanostructured ZrFeNi ternary alloy , 2009 .

[22]  Wei Chen,et al.  Investigation of hydrogen absorption/desorption properties of ZrMn0.85−xFe1+x alloys , 2008 .

[23]  V. Verbetsky,et al.  Interaction in (Ti,Sc)Fe2–H2 and (Zr,Sc)Fe2–H2 systems , 2008 .

[24]  J. Tarascon,et al.  Improvement of hydrogen storage properties of the AB2 Laves phase alloys for automotive application , 2008 .

[25]  S. Agarwal,et al.  Structural and Mössbauer spectroscopic study of cubic phase ZrFe2−xMnx hydrogen storage alloy , 2008 .

[26]  Shuang Li,et al.  Investigation on high-pressure metal hydride hydrogen compressors , 2007 .

[27]  Xinhua Wang,et al.  Hydrogen storage alloys for high-pressure suprapure hydrogen compressor , 2006 .

[28]  Y. Kojima,et al.  Development of metal hydride with high dissociation pressure , 2006 .

[29]  T. Matsunaga,et al.  High-pressure Metal Hydride Tank for Fuel Cell Vehicles , 2007 .

[30]  M. Palm,et al.  Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability , 2004 .

[31]  Tomoyuki Yokota,et al.  “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material , 2003 .

[32]  E. Akiba,et al.  The hydrogen storage characteristics of Ti–Cr–V alloys , 1999 .

[33]  P. Lund,et al.  AB2 metal hydrides for high-pressure and narrow temperature interval applications , 1998 .

[34]  R. Balasubramaniam Hysteresis in metal–hydrogen systems , 1997 .

[35]  Jai-Young Lee,et al.  Hydrogen storage properties of TiMn2-based alloys , 1996 .