Developments on the congruence subgroup problem after the work of Bass, Milnor and Serre
暂无分享,去创建一个
[1] C. Chevalley,et al. Deux Théorèmes d'Arithmétique , 1951 .
[2] J. Serre,et al. Sous-groupes d'indice fini dans $SL\left( {n,Z} \right)$ , 1964 .
[3] J. Mennicke. Finite Factor Groups of the Unimodular Group , 1965 .
[4] Hyman Bass,et al. Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2) , 1967 .
[5] Hyman Bass,et al. Algebraic K-theory , 1968 .
[6] Calvin C. Moore,et al. Group extensions ofp-adic and adelic linear groups , 1968 .
[7] Hideya Matsumoto,et al. Sur les sous-groupes arithm'etiques des groupes semi-simples d'eploy'es , 1969 .
[8] Algebraic cohomology of topological groups , 1970 .
[9] Jean-Pierre Serre,et al. Le Probleme des Groupes de Congruence Pour SL 2 , 1970 .
[10] J. Serre. SUR LES GROUPES DE CONGRUENCE DES VARIÉTÉS ABÉLIENNES. II , 1971 .
[11] M. Raghunathan. The congruence subgroup problem , 2004, math/0503088.
[12] M. Raghunathan. On the congruence subgroup problem, II , 1976 .
[13] Vinay V. Deodhar. On central extensions of rational points of algebraic groups , 1975 .
[14] G. Margulis. Finiteness of quotient groups of discrete subgroups , 1979 .
[15] M. Kneser. Normalteiler ganzzahliger Spingruppen. , 1979 .
[16] A. Lubotzky. Free quotients and the congruence kernel of SL2 , 1982 .
[17] W. V. D. Kallen. SL3 (C[X]) does not have bounded word length , 1982 .
[18] G. Keller,et al. BOUNDED ELEMENTARY GENERATION OF SL,n (0) , 1983 .
[19] M. Raghunathan,et al. On the congruence subgroup problem: Determination of the “metaplectic kernel” , 1983 .
[20] M. Raghunathan. Torsion in cocompact lattices in coverings of spin (2,n) , 1984 .
[21] M. Raghunathan,et al. Topological central extensions of semi-simple groups over local fields , 1984 .
[22] M. Raghunathan. Torsion in cocompact lattices in coverings of spin (2,n) , 1984 .
[23] M. Raghunathan,et al. Topological central extensions ofSL1 (D) , 1988 .
[24] G. Tomanov. On the congruence-subgroup problem for some anisotropic algebraic groups over number fields. , 1989 .
[25] A. Rapinchuk. The congruence subgroup problem for algebraic groups , 1990 .
[26] Gregory Margulis,et al. Discrete Subgroups of Semisimple Lie Groups , 1991 .
[27] B. M. Fulk. MATH , 1992 .
[28] A. Rapinchuk. Congruence subgroup problem for algebraic groups: old and new , 1992 .
[29] Andrei S. Rapinchuk,et al. Algebraic groups and number theory , 1992 .
[30] A. Rapinchuk,et al. ABSTRACT PROPERTIES OF $ S$-ARITHMETIC GROUPS AND THE CONGRUENCE PROBLEM , 1993 .
[31] K. Gruenberg. ANALYTIC PRO‐p GROUPS (London Mathematical Society Lecture Note Series 157) , 1993 .
[32] J. Rosenberg,et al. Algebraic K-Theory and Its Applications , 1995 .
[33] P. Zalesskii. Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic , 1995 .
[34] A. Lubotzky. Subgroup growth and congruence subgroups , 1995 .
[35] Gopal Prasad,et al. Computation of the metaplectic kernel , 1996 .
[36] A. Potapchik,et al. Normal subgroups ofSL1,D and the classification of finite simple groups , 1996 .
[37] Y. Segev. On finite homomorphic images of the multiplicative group of a division algebra , 1999, math/9901151.
[38] Yehuda Shalom,et al. Bounded generation and Kazhdan’s property (T) , 1999 .
[39] Yoav Segev,et al. Valuation-like maps and the congruence subgroup property , 2001 .
[40] Gary M. Seitz,et al. Anisotropic groups of type An and the commuting graph of finite simple groups , 2002 .
[41] Gary M. Seitz,et al. Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable , 2002 .
[42] B. Sury. The Congruence Subgroup Problem - An Elementary Approach Aimed at Applications , 2003 .
[43] Jean-Pierre Serre. Sous-groupes d’indice fini dans SL(n,Z) , 2003 .
[44] Bounded Generation of S-Arithmetic Subgroups of Isotropic Orthogonal Groups over Number Fields , 2005, math/0508480.
[45] D. Morris. Bounded generation of SL(n,A) (after D. Carter, G. Keller and E. Paige) , 2005, math/0503083.
[46] A. Rapinchuk. The Margulis-Platonov conjecture for SL1,D and 2-generation of finite simple groups , 2006 .
[47] Profinite surface groups and the congruence kernel of arithmetic lattices in SL2 (R) , 2005 .
[48] Morris,et al. BOUNDED GENERATION OF SL(n, A) , 2005 .
[49] Christian Ausoni,et al. AN INTRODUCTION TO ALGEBRAIC K-THEORY , 2005 .
[50] B. Sury,et al. The congruence kernel of an arithmetic lattice in a rank one algebraic group over a local field , 2007, 0710.4009.
[51] D. Morris,et al. Bounded generation of SL ( n , A ) ( after , 2007 .
[52] A. Potapchik,et al. Normal subgroups ofSL1,D and the classification of finite simple groups , 1996 .
[53] T. Weigel,et al. On the Second Cohomology of the Norm One Group of a p-Adic Division Algebra , 2022, Michigan Mathematical Journal.