Developments on the congruence subgroup problem after the work of Bass, Milnor and Serre

In this survey article we give an overview of the developments on the congruence subgroup and the metaplectic problems after the work of Bass, Milnor and Serre.

[1]  C. Chevalley,et al.  Deux Théorèmes d'Arithmétique , 1951 .

[2]  J. Serre,et al.  Sous-groupes d'indice fini dans $SL\left( {n,Z} \right)$ , 1964 .

[3]  J. Mennicke Finite Factor Groups of the Unimodular Group , 1965 .

[4]  Hyman Bass,et al.  Solution of the congruence subgroup problem for SLn (n ≥ 3) and Sp2n (n ≥ 2) , 1967 .

[5]  Hyman Bass,et al.  Algebraic K-theory , 1968 .

[6]  Calvin C. Moore,et al.  Group extensions ofp-adic and adelic linear groups , 1968 .

[7]  Hideya Matsumoto,et al.  Sur les sous-groupes arithm'etiques des groupes semi-simples d'eploy'es , 1969 .

[8]  Algebraic cohomology of topological groups , 1970 .

[9]  Jean-Pierre Serre,et al.  Le Probleme des Groupes de Congruence Pour SL 2 , 1970 .

[10]  J. Serre SUR LES GROUPES DE CONGRUENCE DES VARIÉTÉS ABÉLIENNES. II , 1971 .

[11]  M. Raghunathan The congruence subgroup problem , 2004, math/0503088.

[12]  M. Raghunathan On the congruence subgroup problem, II , 1976 .

[13]  Vinay V. Deodhar On central extensions of rational points of algebraic groups , 1975 .

[14]  G. Margulis Finiteness of quotient groups of discrete subgroups , 1979 .

[15]  M. Kneser Normalteiler ganzzahliger Spingruppen. , 1979 .

[16]  A. Lubotzky Free quotients and the congruence kernel of SL2 , 1982 .

[17]  W. V. D. Kallen SL3 (C[X]) does not have bounded word length , 1982 .

[18]  G. Keller,et al.  BOUNDED ELEMENTARY GENERATION OF SL,n (0) , 1983 .

[19]  M. Raghunathan,et al.  On the congruence subgroup problem: Determination of the “metaplectic kernel” , 1983 .

[20]  M. Raghunathan Torsion in cocompact lattices in coverings of spin (2,n) , 1984 .

[21]  M. Raghunathan,et al.  Topological central extensions of semi-simple groups over local fields , 1984 .

[22]  M. Raghunathan Torsion in cocompact lattices in coverings of spin (2,n) , 1984 .

[23]  M. Raghunathan,et al.  Topological central extensions ofSL1 (D) , 1988 .

[24]  G. Tomanov On the congruence-subgroup problem for some anisotropic algebraic groups over number fields. , 1989 .

[25]  A. Rapinchuk The congruence subgroup problem for algebraic groups , 1990 .

[26]  Gregory Margulis,et al.  Discrete Subgroups of Semisimple Lie Groups , 1991 .

[27]  B. M. Fulk MATH , 1992 .

[28]  A. Rapinchuk Congruence subgroup problem for algebraic groups: old and new , 1992 .

[29]  Andrei S. Rapinchuk,et al.  Algebraic groups and number theory , 1992 .

[30]  A. Rapinchuk,et al.  ABSTRACT PROPERTIES OF $ S$-ARITHMETIC GROUPS AND THE CONGRUENCE PROBLEM , 1993 .

[31]  K. Gruenberg ANALYTIC PRO‐p GROUPS (London Mathematical Society Lecture Note Series 157) , 1993 .

[32]  J. Rosenberg,et al.  Algebraic K-Theory and Its Applications , 1995 .

[33]  P. Zalesskii Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic , 1995 .

[34]  A. Lubotzky Subgroup growth and congruence subgroups , 1995 .

[35]  Gopal Prasad,et al.  Computation of the metaplectic kernel , 1996 .

[36]  A. Potapchik,et al.  Normal subgroups ofSL1,D and the classification of finite simple groups , 1996 .

[37]  Y. Segev On finite homomorphic images of the multiplicative group of a division algebra , 1999, math/9901151.

[38]  Yehuda Shalom,et al.  Bounded generation and Kazhdan’s property (T) , 1999 .

[39]  Yoav Segev,et al.  Valuation-like maps and the congruence subgroup property , 2001 .

[40]  Gary M. Seitz,et al.  Anisotropic groups of type An and the commuting graph of finite simple groups , 2002 .

[41]  Gary M. Seitz,et al.  Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable , 2002 .

[42]  B. Sury The Congruence Subgroup Problem - An Elementary Approach Aimed at Applications , 2003 .

[43]  Jean-Pierre Serre Sous-groupes d’indice fini dans SL(n,Z) , 2003 .

[44]  Bounded Generation of S-Arithmetic Subgroups of Isotropic Orthogonal Groups over Number Fields , 2005, math/0508480.

[45]  D. Morris Bounded generation of SL(n,A) (after D. Carter, G. Keller and E. Paige) , 2005, math/0503083.

[46]  A. Rapinchuk The Margulis-Platonov conjecture for SL1,D and 2-generation of finite simple groups , 2006 .

[47]  Profinite surface groups and the congruence kernel of arithmetic lattices in SL2 (R) , 2005 .

[48]  Morris,et al.  BOUNDED GENERATION OF SL(n, A) , 2005 .

[49]  Christian Ausoni,et al.  AN INTRODUCTION TO ALGEBRAIC K-THEORY , 2005 .

[50]  B. Sury,et al.  The congruence kernel of an arithmetic lattice in a rank one algebraic group over a local field , 2007, 0710.4009.

[51]  D. Morris,et al.  Bounded generation of SL ( n , A ) ( after , 2007 .

[52]  A. Potapchik,et al.  Normal subgroups ofSL1,D and the classification of finite simple groups , 1996 .

[53]  T. Weigel,et al.  On the Second Cohomology of the Norm One Group of a p-Adic Division Algebra , 2022, Michigan Mathematical Journal.