On Designs and Multiplier Groups Constructed from Almost Perfect Nonlinear Functions

Let $f:{\mathbb{F}_2^{n}}\to {\mathbb{F}_2^{n}}$ be an almost perfect nonlinear function (APN). The set $D_f:=\{(a,b)\: :\: f(x+a)-f(x)=b\mbox{\ has two solutions}\}$ can be used to distinguish APN functions up to equivalence. We investigate the multiplier groups of theses sets D f . This extends earlier work done by the authors [1].

[1]  Robert Gold,et al.  Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.) , 1968, IEEE Trans. Inf. Theory.

[2]  David Jedlicka,et al.  APN monomials over GF(2n) for infinitely many n , 2007, Finite Fields Their Appl..

[3]  Bart Preneel,et al.  Cryptographic hash functions , 2010, Eur. Trans. Telecommun..

[4]  Alexander Pott,et al.  A new APN function which is not equivalent to a power mapping , 2005, IEEE Transactions on Information Theory.

[5]  Richard M. Wilson,et al.  Hyperplane Sections of Fermat Varieties in P3 in Char.2 and Some Applications to Cyclic Codes , 1993, AAECC.

[6]  Hanfried Lenz,et al.  Design theory , 1985 .

[7]  Gregor Leander,et al.  On the classification of APN functions up to dimension five , 2008, Des. Codes Cryptogr..

[8]  Claude Carlet,et al.  Boolean Functions for Cryptography and Error-Correcting Codes , 2010, Boolean Models and Methods.

[9]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[10]  Alfredo De Santis,et al.  Advances in Cryptology — EUROCRYPT'94 , 1994, Lecture Notes in Computer Science.

[11]  Serge Vaudenay,et al.  Links Between Differential and Linear Cryptanalysis , 1994, EUROCRYPT.

[12]  Ulrich Dempwolff,et al.  Automorphisms and Equivalence of Bent Functions and of Difference Sets in Elementary Abelian 2-Groups , 2006 .

[13]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[14]  M. Kerimov The theory of error-correcting codes☆ , 1980 .

[15]  Shu Lin,et al.  Applied Algebra, Algebraic Algorithms and Error-Correcting Codes , 1999, Lecture Notes in Computer Science.

[16]  Gary McGuire,et al.  Proof of a Conjecture on the Sequence of Exceptional Numbers, Classifying Cyclic Codes and APN Functions , 2009, ArXiv.

[17]  Jürgen Bierbrauer,et al.  Crooked binomials , 2008, Des. Codes Cryptogr..

[18]  Mihail N. Kolountzakis Lattice Tilings by Cubes: Whole, Notched and Extended , 1998, Electron. J. Comb..

[19]  Gohar M. M. Kyureghyan Crooked maps in F22 , 2007, Finite Fields Their Appl..

[20]  Claude Carlet,et al.  Vectorial Boolean Functions for Cryptography , 2006 .

[21]  Dmitry Fon-Der-Flaass,et al.  Crooked Functions, Bent Functions, and Distance Regular Graphs , 1998, Electron. J. Comb..

[22]  Yves Edel On quadratic APN functions and dimensional dual hyperovals , 2010, Des. Codes Cryptogr..

[23]  Tadao Kasami,et al.  The Weight Enumerators for Several Clauses of Subcodes of the 2nd Order Binary Reed-Muller Codes , 1971, Inf. Control..

[24]  O. S. Rothaus,et al.  On "Bent" Functions , 1976, J. Comb. Theory, Ser. A.

[25]  Alexander Pott,et al.  A new almost perfect nonlinear function which is not quadratic , 2008, Adv. Math. Commun..

[26]  Claude Carlet,et al.  New classes of almost bent and almost perfect nonlinear polynomials , 2006, IEEE Transactions on Information Theory.

[27]  Alexander Pott,et al.  On the Equivalence of Nonlinear Functions , 2009, Enhancing Cryptographic Primitives with Techniques from Error Correcting Codes.

[28]  Claude Carlet,et al.  Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..

[29]  John F. Dillon,et al.  Multiplicative Difference Sets via Additive Characters , 1999, Des. Codes Cryptogr..

[30]  Wan Zhaoze Difference Sets in Groups of Order 4p~4 , 2006 .