Biological hydrogen methanation - A review.

Surplus energy out of fluctuating energy sources like wind and solar energy is strongly increasing. Biological hydrogen (H2) methanation (BHM) is a highly promising approach to move the type of energy from electricity to natural gas via electrolysis and the subsequent step of the Sabatier-reaction. This review provides an overview of the numerous studies concerning the topic of BHM. The technical and biological parameters regarding the research results of these studies are compared and analyzed hereafter. A holistic view on how to overcome physical limitations of the fermentation process, such as gas-liquid mass transfer or a rise of the pH value, and on the enhancement of environmental circumstances for the bacterial biomass are delivered within. With regards to ex-situ methanation, the evaluated studies show a distinct connection between methane production and the methane percentage in the off-gas.

[1]  F. Graf,et al.  Renewable Power-to-Gas: A technological and economic review , 2016 .

[2]  Ralf Cord-Ruwisch,et al.  The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor , 1988, Archives of Microbiology.

[3]  P. Weiland Biogas production: current state and perspectives , 2009, Applied Microbiology and Biotechnology.

[4]  E. Trably,et al.  Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. , 2015, Bioresource technology.

[5]  K. Mohr,et al.  The Rotary Trickle‐Bed Reactor – A New Reactor Concept for Biological Gas Purification , 2001 .

[6]  M. Jentsch,et al.  Optimal Use of Power-to-Gas Energy Storage Systems in an 85% Renewable Energy Scenario , 2014 .

[7]  Largus T. Angenent,et al.  A Single-Culture Bioprocess of Methanothermobacter thermautotrophicus to Upgrade Digester Biogas by CO2-to-CH4 Conversion with H2 , 2013, Archaea.

[8]  Hang-Sik Shin,et al.  Fouling in membrane bioreactors: An updated review. , 2017, Water research.

[9]  Ricardo Cavicchioli,et al.  Archaea — timeline of the third domain , 2011, Nature Reviews Microbiology.

[10]  Irini Angelidaki,et al.  Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights , 2012, Applied Microbiology and Biotechnology.

[11]  J. Lelieveld,et al.  Identification of methanogenic pathways in anaerobic digesters using stable carbon isotopes , 2010 .

[12]  Tim Patterson,et al.  Biological methanation of CO2 in a novel biofilm plug-flow reactor: A high rate and low parasitic energy process , 2017 .

[13]  I. Marison,et al.  Improved growth and methane production conditions for Methanobacterium thermoautotrophicum , 1993, Applied Microbiology and Biotechnology.

[14]  R. Worden,et al.  Reactor Design Issues for Synthesis‐Gas Fermentations , 1999, Biotechnology progress.

[15]  Reinerus Benders,et al.  The application of power-to-gas, pumped hydro storage and compressed air energy storage in an electricity system at different wind power penetration levels , 2014 .

[16]  M. Burkhardt,et al.  Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system. , 2015, Bioresource technology.

[17]  A. Spang,et al.  Archaea in biogeochemical cycles. , 2013, Annual review of microbiology.

[18]  T. Satake,et al.  Steady state characteristics of acclimated hydrogenotrophic methanogens on inorganic substrate in continuous chemostat reactors. , 2008, Bioresource technology.

[19]  I. Marison,et al.  The coupling between catabolism and anabolism of Methanobacterium thermoautotrophicum in H2- and iron-limited continuous cultures , 1999 .

[20]  Qi Zhou,et al.  Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading. , 2013, Bioresource technology.

[21]  J. Belaich,et al.  Energetics of the growth of Methanococcus thermolithotrophicus , 1986, Archives of Microbiology.

[22]  J. Russell The Energy Spilling Reactions of Bacteria and Other Organisms , 2007, Journal of Molecular Microbiology and Biotechnology.

[23]  D. Polag,et al.  Evidence of anaerobic syntrophic acetate oxidation in biogas batch reactors by analysis of 13C carbon isotopes , 2013, Isotopes in environmental and health studies.

[24]  M. Lebuhn,et al.  Methanogens in biogas production from renewable resources--a novel molecular population analysis approach. , 2008, Water science and technology : a journal of the International Association on Water Pollution Research.

[25]  A. Lemmer,et al.  Intrinsic gas production kinetics of selected intermediates in anaerobic filters for demand-orientated energy supply , 2018, Environmental technology.

[26]  S. Rittmann,et al.  Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. , 2013, Bioresource technology.

[27]  L. Rehmann,et al.  A Review of Process-Design Challenges for Industrial Fermentation of Butanol from Crude Glycerol by Non-Biphasic Clostridium pasteurianum , 2016 .

[28]  J. Vargas,et al.  Mathematical model of the CO2 solubilisation reaction rates developed for the study of photobioreactors , 2014 .

[29]  Martin Greiner,et al.  Seasonal optimal mix of wind and solar power in a future, highly renewable Europe , 2010 .

[30]  J. Bélaïch,et al.  Energetics of the growth of Methanobacterium thermoautotrophicum and Methanococcus thermolithotrophicus on ammonium chloride and dinitrogen , 1987, Archives of Microbiology.

[31]  J. H. Kim,et al.  Biological conversion of CO2 to CH4 using hydrogenotrophic methanogen in a fixed bed reactor , 2012 .

[32]  Anja Drews,et al.  Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures , 2010 .

[33]  N. Alfaro,et al.  A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. , 2015, Bioresource technology.

[34]  M. Burkhardt,et al.  Methanation of hydrogen and carbon dioxide , 2013 .

[35]  S. Rittmann A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems. , 2015, Advances in biochemical engineering/biotechnology.

[36]  K. T. Wieringa,et al.  The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria , 1939, Antonie van Leeuwenhoek.

[37]  B. Shanks,et al.  Enhancing CO-water mass transfer by functionalized MCM41 nanoparticles , 2008 .

[38]  Irini Angelidaki,et al.  In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate. , 2016, Bioresource technology.

[39]  J. Navarro,et al.  Growth of Methanococcus thermolithotrophicus in batch and continuous culture on H2 and CO2: influence of agitation , 1988, Applied Microbiology and Biotechnology.

[40]  Werner Fuchs,et al.  Characteristics of adapted hydrogenotrophic community during biomethanation. , 2017, The Science of the total environment.

[41]  Y. Liu Energy uncoupling in microbial growth under substrate-sufficient conditions , 1998, Applied Microbiology and Biotechnology.

[42]  T. Schildhauer,et al.  Production of synthetic natural gas (SNG) from coal and dry biomass - A technology review from 1950 to 2009 , 2010 .

[43]  J. Keltjens,et al.  Coupling of Methanothermobacter thermautotrophicus Methane Formation and Growth in Fed-Batch and Continuous Cultures under Different H2 Gassing Regimens , 2006, Applied and Environmental Microbiology.

[44]  R. Cord-Ruwisch,et al.  Dissolved hydrogen concentration as an on-line control parameter for the automated operation and optimization of anaerobic digesters. , 1997, Biotechnology and bioengineering.

[45]  Anne-Kristin Kaster,et al.  Methanogenic archaea: ecologically relevant differences in energy conservation , 2008, Nature Reviews Microbiology.

[46]  N. Nishio,et al.  Biomethanation of H2 and CO2 by Methanobacterium thermoautotrophicum in membrane and ceramic bioreactors , 1987 .

[47]  Paul Deane,et al.  A perspective on the potential role of renewable gas in a smart energy island system , 2015 .

[48]  R. Mah,et al.  Growth and Methanogenesis by Methanosarcina Strain 227 on Acetate and Methanol , 1978, Applied and Environmental Microbiology.

[49]  E. Kötter,et al.  The geographic potential of Power-to-Gas in a German model region - Trier-Amprion 5 , 2015 .

[50]  R. J. Zoetemeyer,et al.  Anaerobic digestion of glucose with separated acid production and methane formation , 1979 .

[51]  Christoph Herwig,et al.  Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H2 and CO2 , 2012 .

[52]  Y. Takahara,et al.  Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions , 1992 .

[53]  Werner Fuchs,et al.  Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor , 2016 .

[54]  N. Nishio,et al.  CH4 production from H2 and CO2 byMethanobacterium thermoautotrophicum cells fixed on hollow fibers , 1988, Biotechnology Letters.

[55]  Qi Zhou,et al.  Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. , 2012, Biotechnology and bioengineering.

[56]  B. Sang,et al.  Effects of pH conditions on the biological conversion of carbon dioxide to methane in a hollow-fiber membrane biofilm reactor (Hf-MBfR) , 2008 .

[57]  Irini Angelidaki,et al.  Ex-situ biogas upgrading and enhancement in different reactor systems. , 2017, Bioresource technology.

[58]  Christoph Herwig,et al.  Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2 , 2015, Critical reviews in biotechnology.

[59]  J. Bailey,et al.  Mass transfer characterization of an airlift probe for oxygenating and mixing cell suspensions in an NMR spectrometer , 1991, Biotechnology and bioengineering.

[60]  Andreas Lemmer,et al.  Demand-driven biogas production in anaerobic filters , 2017 .

[61]  Erkki Aura,et al.  Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor. , 2015, Bioresource technology.

[62]  J. Reeve,et al.  Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum deltaH , 1997, Journal of bacteriology.

[63]  J. Belaich,et al.  Growth of Methanobacterium thermoautotrophicum on H2CO2: High CH4 productivities in continuous culture , 1990 .

[64]  G. Diekert,et al.  Metabolism of homoacetogens , 2004, Antonie van Leeuwenhoek.

[65]  E. C. Bugante,et al.  Methane production from hydrogen and carbon dioxide and monoxide in a column bioreactor of thermophilic methanogens by gas recirculation , 1989 .

[66]  Shiro Nagai,et al.  Inhibition of the Fermentation of Propionate to Methane by Hydrogen, Acetate, and Propionate , 1990, Applied and environmental microbiology.

[67]  D. Deublein,et al.  Biogas from Waste and Renewable Resources , 2008 .

[68]  D. Grasso,et al.  Chemo-autotrophic biogas purification for methane enrichment: mechanism and kinetics , 1995 .

[69]  S. Pirt The maintenance energy of bacteria in growing cultures , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[70]  J. Gaddy,et al.  Bioreactors for synthesis gas fermentations , 1991 .

[71]  Imona C. Omole Hollow-fiber membrane contactors , 1999 .

[72]  Serge R. Guiot,et al.  Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas. , 2011, Environmental science & technology.

[73]  Robert Heyer,et al.  Biological methanation of hydrogen within biogas plants: A model-based feasibility study , 2014 .

[74]  Gunnar Benjaminsson,et al.  Power-to-Gas – A technical review , 2013 .

[75]  Dieter Deublein,et al.  Biogas from Waste and Renewable Resources: An Introduction , 2008 .

[76]  J. Monod The Growth of Bacterial Cultures , 1949 .

[77]  G. Guebitz,et al.  Biogas Science and Technology , 2015 .

[78]  Irini Angelidaki,et al.  Hollow fiber membrane based H2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor , 2013, Applied Microbiology and Biotechnology.

[79]  Perry L. McCarty,et al.  One hundred years of anaerobic treatment , 1982 .

[80]  Shiro Nagai,et al.  Continuous CH4 Production from H2 and CO2 by Methanobacterium thermoautotrophicum in a fixed-bed reactor , 1988 .

[81]  D. Wise,et al.  Biomethanation: Anaerobic fermentation of CO2, H2 and CO to methane , 1978 .

[82]  R. Thauer,et al.  Carbon isotope fractionation by Methanobacterium thermoautotrophicum , 1979, Archives of Microbiology.

[83]  C. Schleper,et al.  Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies , 2015, Life.

[84]  W. Wukovits,et al.  Process efficiency simulation for key process parameters in biological methanogenesis , 2014 .

[85]  S. Rittmann,et al.  Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis , 2014 .

[86]  W. Whitman,et al.  Metabolic, Phylogenetic, and Ecological Diversity of the Methanogenic Archaea , 2008, Annals of the New York Academy of Sciences.

[87]  Irini Angelidaki,et al.  Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture , 2012, Biotechnology and bioengineering.

[88]  Anamitra Bhattacharyya,et al.  The genome of Syntrophus aciditrophicus: Life at the thermodynamic limit of microbial growth , 2007, Proceedings of the National Academy of Sciences.

[89]  Stephen A Jackson,et al.  Study of the performance of a thermophilic biological methanation system. , 2017, Bioresource technology.

[90]  R. Thauer,et al.  Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum , 1980, Archives of Microbiology.

[91]  Andreas Lemmer,et al.  Zweiphasige Vergärung nachwachsender Rohstoffe - Einsatz des Bioleaching-Verfahrens zur Verwertung von Grassilage , 2007 .

[92]  Ross Gagliano,et al.  Review of , 2006, UBIQ.