Structural and Comparative Analyses of Insects Suggest the Presence of an Ultra-Conserved Regulatory Element of the Genes Encoding Vacuolar-Type ATPase Subunits and Assembly Factors

Gene and genome comparison represent an invaluable tool to identify evolutionarily conserved sequences with possible functional significance. In this work, we have analyzed orthologous genes encoding subunits and assembly factors of the V-ATPase complex, an important enzymatic complex of the vacuolar and lysosomal compartments of the eukaryotic cell with storage and recycling functions, respectively, as well as the main pump in the plasma membrane that energizes the epithelial transport in insects. This study involves 70 insect species belonging to eight insect orders. We highlighted the conservation of a short sequence in the genes encoding subunits of the V-ATPase complex and their assembly factors analyzed with respect to their exon-intron organization of those genes. This study offers the possibility to study ultra-conserved regulatory elements under an evolutionary perspective, with the aim of expanding our knowledge on the regulation of complex gene networks at the basis of organellar biogenesis and cellular organization.

[1]  D. Leader,et al.  NHA1 is a cation/proton antiporter essential for the water-conserving functions of the rectal complex in Tribolium castaneum , 2022, bioRxiv.

[2]  Maxwell D. Sanderford,et al.  TimeTree 5: An Expanded Resource for Species Divergence Times , 2022, Molecular biology and evolution.

[3]  J. Julien,et al.  Dual Inhibition of Vacuolar-ATPase and TMPRSS2 Is Required for Complete Blockade of SARS-CoV-2 Entry into Cells , 2022, bioRxiv.

[4]  Steven J. Marygold,et al.  FlyBase: a guided tour of highlighted features , 2022, Genetics.

[5]  P. Dimitri,et al.  Constitutive Heterochromatin in Eukaryotic Genomes: A Mine of Transposable Elements , 2022, Cells.

[6]  P. D'addabbo,et al.  A genomic survey of Tc1-mariner transposons in nematodes suggests extensive horizontal transposon transfer events. , 2021, Molecular phylogenetics and evolution.

[7]  D. Aiello,et al.  The mitochondrial aspartate/glutamate carrier (AGC or Aralar1) isoforms in D. melanogaster: Biochemical characterization, gene structure, and evolutionary analysis. , 2021, Biochimica et biophysica acta. General subjects.

[8]  Z. Mao,et al.  The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases , 2020, Translational Neurodegeneration.

[9]  L. Viggiano,et al.  “What You Need, Baby, I Got It”: Transposable Elements as Suppliers of Cis-Operating Sequences in Drosophila , 2020, Biology.

[10]  Kazuki Sato,et al.  Systemic RNAi of V‐ATPase subunit B causes molting defect and developmental abnormalities in Periplaneta fuliginosa , 2019, Insect science.

[11]  R. Ramírez-González,et al.  Impact of transposable elements on genome structure and evolution in bread wheat , 2018, Genome Biology.

[12]  C. Feschotte,et al.  Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. , 2018, Current opinion in genetics & development.

[13]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[14]  A. Siepel,et al.  New genes often acquire male-specific functions but rarely become essential in Drosophila , 2017, Genes & development.

[15]  T. Pulinilkunnil,et al.  The MiTF/TFE Family of Transcription Factors: Master Regulators of Organelle Signaling, Metabolism, and Stress Adaptation , 2017, Molecular Cancer Research.

[16]  P. Dimitri,et al.  Comparative Genomic Analyses Provide New Insights into the Evolutionary Dynamics of Heterochromatin in Drosophila , 2016, PLoS genetics.

[17]  David S. Wishart,et al.  Heatmapper: web-enabled heat mapping for all , 2016, Nucleic Acids Res..

[18]  Andreas Gogol-Döring,et al.  A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes , 2016, Nature Communications.

[19]  A. Ballabio,et al.  Drosophila Mitf regulates the V-ATPase and the lysosomal-autophagic pathway , 2016, Autophagy.

[20]  R. Asokan,et al.  Diet-Delivered dsRNAs for Juvenile Hormone-Binding Protein and Vacuolar ATPase-H Implied Their Potential in the Management of the Melon Aphid (Hemiptera: Aphididae) , 2015, Environmental Entomology.

[21]  M. Forgac,et al.  Recent Insights into the Structure, Regulation, and Function of the V-ATPases. , 2015, Trends in biochemical sciences.

[22]  K. Verstrepen,et al.  How do regulatory networks evolve and expand throughout evolution? , 2015, Current opinion in biotechnology.

[23]  S. Kong,et al.  Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1 , 2015, Journal of Cell Science.

[24]  P. Witting,et al.  Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing , 2015, Front. Physiol..

[25]  Shuangxia Jin,et al.  Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V‐ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation , 2015, Plant biotechnology journal.

[26]  Sandra Gesing,et al.  VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases , 2014, Nucleic Acids Res..

[27]  J. Martina,et al.  Novel roles for the MiTF/TFE family of transcription factors in organelle biogenesis, nutrient sensing, and energy homeostasis , 2014, Cellular and Molecular Life Sciences.

[28]  C. Caggese,et al.  Mitochondrial glutamate carriers from Drosophila melanogaster: biochemical, evolutionary and modeling studies. , 2013, Biochimica et biophysica acta.

[29]  Dennis Brown,et al.  Regulation of luminal acidification by the V-ATPase. , 2013, Physiology.

[30]  A. Whitfield,et al.  Development of RNAi Methods for Peregrinus maidis, the Corn Planthopper , 2013, PloS one.

[31]  Y. Xia,et al.  Vacuolar ATPase subunit H is essential for the survival and moulting of Locusta migratoria manilensis , 2012, Insect molecular biology.

[32]  H. Daniell,et al.  Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins , 2012, Plant Molecular Biology.

[33]  A. Ballabio,et al.  Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. , 2011, Human molecular genetics.

[34]  Denis Thieffry,et al.  RSAT 2011: regulatory sequence analysis tools , 2011, Nucleic Acids Res..

[35]  P. Verma,et al.  RNA interference for the control of whiteflies (Bemisia tabaci) by oral route , 2011, Journal of Biosciences.

[36]  Henrik Kaessmann,et al.  Origins, evolution, and phenotypic impact of new genes. , 2010, Genome research.

[37]  M. Forgac,et al.  Regulation and isoform function of the V-ATPases. , 2010, Biochemistry.

[38]  P. Hiesinger,et al.  A dual function of V0-ATPase a1 provides an endolysosomal degradation mechanism in Drosophila melanogaster photoreceptors , 2010, The Journal of cell biology.

[39]  F. Kondrashov,et al.  The evolution of gene duplications: classifying and distinguishing between models , 2010, Nature Reviews Genetics.

[40]  A. Ballabio,et al.  Lysosomal enhancement: A CLEAR answer to cellular degradative needs , 2009, Cell cycle.

[41]  S. Ohno,et al.  Evolution from fish to mammals by gene duplication. , 2009, Hereditas.

[42]  Valerio Embrione,et al.  A Gene Network Regulating Lysosomal Biogenesis and Function , 2009, Science.

[43]  K. Beyenbach,et al.  Vacuolar-type proton pumps in insect epithelia , 2009, Journal of Experimental Biology.

[44]  J. Harrow,et al.  Identifying protein-coding genes in genomic sequences , 2009, Genome Biology.

[45]  Y. Kamiya,et al.  Co-regulation of ribosomal protein genes as an indicator of growth status , 2008, Plant signaling & behavior.

[46]  C. Nüsslein-Volhard,et al.  Live Imaging of Neuronal Degradation by Microglia Reveals a Role for v0-ATPase a1 in Phagosomal Fusion In Vivo , 2008, Cell.

[47]  C. Feschotte Transposable elements and the evolution of regulatory networks , 2008, Nature Reviews Genetics.

[48]  Graziano Pesole,et al.  BMC Evolutionary Biology BioMed Central , 2007 .

[49]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[50]  Michael Forgac,et al.  Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology , 2007, Nature Reviews Molecular Cell Biology.

[51]  J. Dow,et al.  Using FlyAtlas to identify better Drosophila melanogaster models of human disease , 2007, Nature Genetics.

[52]  Yongwon Choi,et al.  v-ATPase V0 subunit d2–deficient mice exhibit impaired osteoclast fusion and increased bone formation , 2006, Nature Medicine.

[53]  Michael Ashburner,et al.  Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome , 2006, Genome Biology.

[54]  Kejin Hu Intron exclusion and the mystery of intron loss , 2006, FEBS letters.

[55]  R. Charlab,et al.  Systematic identification of pseudogenes through whole genome expression evidence profiling , 2006, Nucleic acids research.

[56]  G. Wagner,et al.  Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. What is the role of genome duplication in the evolution of complexity and diversity? , 2006, Molecular biology and evolution.

[57]  Walter Gilbert,et al.  The evolution of spliceosomal introns: patterns, puzzles and progress , 2006, Nature Reviews Genetics.

[58]  D. Ausiello,et al.  V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway , 2006, Nature Cell Biology.

[59]  L. Zhang,et al.  Identification of One Intron Loss and Phylogenetic Evolution of Dfak Gene in the Drosophila melanogaster Species Group , 2005, Genetica.

[60]  Juan Du,et al.  Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. , 2005, Physiological genomics.

[61]  Sunil Q. Mehta,et al.  The v-ATPase V0 Subunit a1 Is Required for a Late Step in Synaptic Vesicle Exocytosis in Drosophila , 2005, Cell.

[62]  N. Copeland,et al.  Melanocytes and the microphthalmia transcription factor network. , 2004, Annual review of genetics.

[63]  M. Futai,et al.  Diverse and essential roles of mammalian vacuolar-type proton pump ATPase: toward the physiological understanding of inside acidic compartments. , 2004, Biochimica et biophysica acta.

[64]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[65]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[66]  N. Morel,et al.  Specific sorting of the a1 isoform of the V-H+ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane , 2003, Journal of Cell Science.

[67]  Ruth C Lovering,et al.  Revised nomenclature for mammalian vacuolar-type H+ -ATPase subunit genes. , 2003, Molecular cell.

[68]  T. Nishi,et al.  Proton translocation driven by ATP hydrolysis in V‐ATPases , 2003, FEBS letters.

[69]  P. Dames,et al.  Distribution and serotonin-induced activation of vacuolar-type H+-ATPase in the salivary glands of the blowfly Calliphora vicina , 2003, Journal of Experimental Biology.

[70]  B. Birren,et al.  Sequencing and comparison of yeast species to identify genes and regulatory elements , 2003, Nature.

[71]  Jon D. McAuliffe,et al.  Phylogenetic Shadowing of Primate Sequences to Find Functional Regions of the Human Genome , 2003, Science.

[72]  S. Shimada,et al.  A novel putative M9.2 isoform of V-ATPase expressed in the nervous system , 2003, Neuroreport.

[73]  Peer Bork,et al.  Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster , 2002, Science.

[74]  T. Nishi,et al.  The vacuolar (H+)-ATPases — nature's most versatile proton pumps , 2002, Nature Reviews Molecular Cell Biology.

[75]  M Gribskov,et al.  A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. , 2001, Genome research.

[76]  Y. Gray,et al.  It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. , 2000, Trends in genetics : TIG.

[77]  M. R. Adams,et al.  Comparative genomics of the eukaryotes. , 2000, Science.

[78]  S. Grinstein,et al.  Animal plasma membrane energization by proton‐motive V‐ATPases , 1999, BioEssays : news and reviews in molecular, cellular and developmental biology.

[79]  N. Nelson,et al.  Vacuolar and plasma membrane proton-adenosinetriphosphatases. , 1999, Physiological reviews.

[80]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[81]  S. Maddrell,et al.  H + V-ATPases Energize Animal Plasma Membranes for Secretion and Absorption of Ions and Fluids' , 1998 .

[82]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[83]  J. Burch,et al.  DNA-binding specificity of the PAR basic leucine zipper protein VBP partially overlaps those of the C/EBP and CREB/ATF families and is influenced by domains that flank the core basic region , 1995, Molecular and cellular biology.

[84]  J. Dow,et al.  Regulation of Plasma Membrane V-ATPase Activity by Dissociation of Peripheral Subunits (*) , 1995, The Journal of Biological Chemistry.

[85]  James A. Vaught,et al.  microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. , 1994, Genes & development.

[86]  T. D. Schneider,et al.  Sequence logos: a new way to display consensus sequences. , 1990, Nucleic acids research.

[87]  F. Corpet Multiple sequence alignment with hierarchical clustering. , 1988, Nucleic acids research.

[88]  H. Arai,et al.  Topography and subunit stoichiometry of the coated vesicle proton pump. , 1988, The Journal of biological chemistry.

[89]  J. Gatehouse,et al.  Systemic RNAi in the small hive beetle Aethina tumida Murray (Coleoptera: Nitidulidae), a serious pest of the European honey bee Apis mellifera. , 2017, Pest management science.

[90]  G. Pesole,et al.  Energy biogenesis: one key for coordinating two genomes. , 2005, Trends in genetics : TIG.

[91]  H. Merzendorfer,et al.  Structure and regulation of insect plasma membrane H(+)V-ATPase. , 2000, The Journal of experimental biology.

[92]  C. Cremers,et al.  Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness , 1999, Nature Genetics.

[93]  P. Smith,et al.  Many Transporting Epithelia Contain a Subpopulation Of , 2022 .