Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts.

A solution-derived NiOx film was employed as the hole contact of a flexible organic-inorganic hybrid perovskite solar cell. The NiOx film, which was spin coated from presynthesized NiOx nanoparticles solution, can extract holes and block electrons efficiently, without any other post-treatments. An optimal power conversion efficiency (PCE) of 16.47% was demonstrated in the NiOx-based perovskite solar cell on an ITO-glass substrate, which is much higher than that of the perovskite solar cells using high temperature-derived NiOx film contacts. The low-temperature deposition process made the NiOx films suitable for flexible devices. NiOx-based flexible perovskite solar cells were fabricated on ITO-PEN substrates, and a preliminary PCE of 13.43% was achieved.

[1]  W. Que,et al.  Solution-induced morphology change of organic-inorganic hybrid perovskite films for high efficiency inverted planar heterojunction solar cells , 2016 .

[2]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[3]  W. Que,et al.  High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer , 2015 .

[4]  Jae Woong Jung,et al.  A Low‐Temperature, Solution‐Processable, Cu‐Doped Nickel Oxide Hole‐Transporting Layer via the Combustion Method for High‐Performance Thin‐Film Perovskite Solar Cells , 2015, Advanced materials.

[5]  Dong Yang,et al.  High efficiency flexible perovskite solar cells using superior low temperature TiO2 , 2015 .

[6]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[7]  Lingamallu Giribabu,et al.  Recent advances in flexible perovskite solar cells. , 2015, Chemical communications.

[8]  Sung Cheol Yoon,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p‐Type NiO Electrode Formed by a Pulsed Laser Deposition , 2015, Advanced materials.

[9]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[10]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[11]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[12]  W. Choy,et al.  Post‐treatment‐Free Solution‐Processed Non‐stoichiometric NiOx Nanoparticles for Efficient Hole‐Transport Layers of Organic Optoelectronic Devices , 2015, Advanced materials.

[13]  Shihe Yang,et al.  High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer , 2015 .

[14]  Tzung‐Fang Guo,et al.  Perovskite-Based Solar Cells With Nickel-Oxidized Nickel Oxide Hole Transfer Layer , 2015, IEEE Transactions on Electron Devices.

[15]  Meng Zhang,et al.  Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. , 2015, Nano letters.

[16]  Wenjun Zhang,et al.  p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. , 2015, Dalton transactions.

[17]  Xudong Yang,et al.  Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells , 2015 .

[18]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[19]  Seong Sik Shin,et al.  Effi cient CH 3 NH 3 PbI 3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition , 2015 .

[20]  Jiang Tang,et al.  PbS colloidal quantum dots as an effective hole transporter for planar heterojunction perovskite solar cells , 2015 .

[21]  R. Munir,et al.  inorganic copper ( I ) thiocyanate ( CuSCN ) hole transporting layers for e ffi cient p – i – n perovskite solar cells † , 2015 .

[22]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[23]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[24]  Feng Huang,et al.  CH₃NH₃PbI₃-based planar solar cells with magnetron-sputtered nickel oxide. , 2014, ACS applied materials & interfaces.

[25]  Teng Zhang,et al.  High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. , 2014, Angewandte Chemie.

[26]  Jun-Seok Yeo,et al.  Planar heterojunction perovskite solar cells with superior reproducibility , 2014, Scientific Reports.

[27]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[28]  Ming-Hsien Li,et al.  Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. , 2014, ACS applied materials & interfaces.

[29]  Wei Chen,et al.  Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells , 2014 .

[30]  Yun-Chorng Chang,et al.  Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[31]  Gary Hodes,et al.  Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells. , 2014, The journal of physical chemistry letters.

[32]  Yu-Cheng Chang,et al.  p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells , 2014, Scientific Reports.

[33]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[34]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[35]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[36]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[37]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[38]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[39]  J. Bisquert The Swift Surge of Perovskite Photovoltaics , 2013 .

[40]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[41]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[42]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[43]  A. Heeger,et al.  A Solution‐Processed MoOx Anode Interlayer for Use within Organic Photovoltaic Devices , 2012 .

[44]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[45]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.