Chapter 1 Pulse Sequence Considerations and Schemes

[1]  Eric T Ahrens,et al.  In vivo imaging platform for tracking immunotherapeutic cells , 2005, Nature Biotechnology.

[2]  W. J. Lorenz,et al.  19F-{1H} Nuclear Overhauser Effect and Proton Decoupling of 5-Fluorouracil and α-Fluoro-β-Alanine , 1995 .

[3]  Tobias Schaeffter,et al.  Simultaneous dual‐nuclei imaging for motion corrected detection and quantification of 19F imaging agents , 2011, Magnetic resonance in medicine.

[4]  J. Bulte,et al.  Fluorine (19F) MRS and MRI in biomedicine , 2011, NMR in biomedicine.

[5]  U. Flögel,et al.  Noninvasive Detection of Graft Rejection by In Vivo 19F MRI in the Early Stage , 2011, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[6]  Giuseppe Baselli,et al.  Optimization of rapid acquisition with relaxation enhancement (RARE) pulse sequence parameters for 19F‐MRI studies , 2014, Journal of magnetic resonance imaging : JMRI.

[7]  B. A. French,et al.  Early Assessment of Pulmonary Inflammation by 19F MRI In Vivo , 2010, Circulation. Cardiovascular imaging.

[8]  D. Le Bihan,et al.  A new paradigm for high‐sensitivity 19F magnetic resonance imaging of perfluorooctylbromide , 2010, Magnetic resonance in medicine.

[9]  J. Bulte,et al.  Tracking immune cells in vivo using magnetic resonance imaging , 2013, Nature Reviews Immunology.

[10]  Rolf Schubert,et al.  In Vivo Monitoring of Inflammation After Cardiac and Cerebral Ischemia by Fluorine Magnetic Resonance Imaging , 2008, Circulation.

[11]  K. Nicolay,et al.  Relaxometric studies of gadolinium-functionalized perfluorocarbon nanoparticles for MR imaging. , 2014, Contrast media & molecular imaging.

[12]  Cornelius Faber,et al.  Boosting 19F MRI—SNR efficient detection of paramagnetic contrast agents using ultrafast sequences , 2013, Magnetic resonance in medicine.

[13]  K. Gilbert,et al.  In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence , 2014, International journal of nanomedicine.

[14]  Rolf Schubert,et al.  Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: image reconstruction, biological half‐lives and sensitivity , 2014, NMR in biomedicine.

[15]  Enzo Terreno,et al.  Tunable imaging of cells labeled with MRI-PARACEST agents. , 2005, Angewandte Chemie.

[16]  Jürgen Rahmer,et al.  Balanced UTE‐SSFP for 19F MR imaging of complex spectra , 2015, Magnetic resonance in medicine.

[17]  R. Mason,et al.  New frontiers and developing applications in 19F NMR. , 2013, Progress in nuclear magnetic resonance spectroscopy.

[18]  Andrew M Blamire,et al.  19F‐lanthanide complexes with increased sensitivity for 19F‐MRI: Optimization of the MR acquisition , 2011, Magnetic resonance in medicine.

[19]  K. Ohlsen,et al.  Visualization of Abscess Formation in a Murine Thigh Infection Model of Staphylococcus aureus by 19F-Magnetic Resonance Imaging (MRI) , 2011, PloS one.

[20]  C. Bremer,et al.  Highly shifted proton MR imaging: cell tracking by using direct detection of paramagnetic compounds. , 2014, Radiology.

[21]  Martin Blaimer,et al.  Reducing contrast contamination in radial turbo‐spin‐echo acquisitions by combining a narrow‐band KWIC filter with parallel imaging , 2014, Magnetic resonance in medicine.