A finite element method for space-time directional fractional diffusion partial differential equations in the plane and its error analysis

Abstract We present and analyze a fast finite element method for space–time fractional directional partial differential equations in a bounded domain in the plane. The fast solver significantly reduces the computational work of solving the discrete linear algebraic systems from O ( M N 3 + M 2 N ) by a direct solver to O ( M N log ( M N ) ) per Krylov subspace iteration and a memory requirement from O ( M N 2 ) to O ( N log M ) . An error estimate is proved. Numerical results are presented to show the utility of the method.

[1]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[2]  J. P. Roop Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R 2 , 2006 .

[3]  Mark M. Meerschaert,et al.  A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..

[4]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[5]  William Rundell,et al.  Variational formulation of problems involving fractional order differential operators , 2013, Math. Comput..

[6]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[7]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[8]  Hong Wang,et al.  A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation , 2013, J. Comput. Phys..

[9]  V. Ervin,et al.  Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .

[10]  Hong Wang,et al.  A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations , 2015, J. Comput. Phys..

[11]  Hong Wang,et al.  A Fast Finite Element Method for Space-Fractional Dispersion Equations on Bounded Domains in ℝ2 , 2015, SIAM J. Sci. Comput..

[12]  I. Podlubny Fractional differential equations , 1998 .

[13]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[14]  Hong Wang,et al.  Inhomogeneous Dirichlet Boundary-Value Problems of Space-Fractional Diffusion Equations and their Finite Element Approximations , 2014, SIAM J. Numer. Anal..

[15]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[16]  Zhimin Zhang,et al.  Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations , 2015, 1511.03453.

[17]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[18]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[19]  Hong Wang,et al.  A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations , 2012, SIAM J. Sci. Comput..

[20]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.