Estimation of quantum channels: Identifiability and ML methods

We determine the minimal experimental resources that ensure a unique solution in the estimation of trace-preserving quantum channels with both direct and convex optimization methods. A convenient parametrization of the constrained set is used to develop a globally converging Newton-type algorithm that ensures a physically admissible solution to the problem. Numerical simulations are provided to support the results, and indicate that the minimal experimental setting is sufficient to guarantee good estimates.

[1]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[2]  Giuliano Benenti,et al.  Simple representation of quantum process tomography , 2009, 0905.0578.

[3]  Timothy F. Havel,et al.  Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points , 2003 .

[4]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[5]  Claudio Altafini,et al.  Modeling and Control of Quantum Systems: An Introduction , 2012, IEEE Transactions on Automatic Control.

[6]  Massimiliano F. Sacchi Maximum-likelihood reconstruction of completely positive maps , 2001 .

[7]  Wojciech Daniel Book Review: States, effects and operations. Fundamental notions of quantum theory. Karl Kraus Lectures in Mathematical Physics at the University of Texas at Austin. Lecture Notes in Physics 190, Springer-Verlag, Berlin-Heidelberg, 1983 IX+151 pp., 17 refs. , 1986 .

[8]  Matteo G. A. Paris,et al.  Quorum of observables for universal quantum estimation , 2001 .

[9]  Martin Plesch,et al.  Process reconstruction: From unphysical to physical maps via maximum likelihood , 2005 .

[10]  G. Vallone,et al.  Experimental quantum process tomography of non-trace-preserving maps , 2010, 1008.5334.

[11]  Ruediger Schack,et al.  Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.

[12]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[13]  D. Kaszlikowski,et al.  Minimal qubit tomography , 2004, quant-ph/0405084.

[14]  P. Villoresi,et al.  Experimental verification of the feasibility of a quantum channel between space and Earth , 2008, 0803.1871.

[15]  Zdeněk Hradil,et al.  Maximum-likelihood estimation of quantum processes , 2001, OFC 2001.

[16]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[17]  J. P. Woerdman,et al.  Maximum-likelihood estimation of Mueller matrices. , 2005, Optics letters.