Estimation of quantum channels: Identifiability and ML methods
暂无分享,去创建一个
[1] D. Bouwmeester,et al. The Physics of Quantum Information , 2000 .
[2] Giuliano Benenti,et al. Simple representation of quantum process tomography , 2009, 0905.0578.
[3] Timothy F. Havel,et al. Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points , 2003 .
[4] K. Kraus,et al. States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .
[5] Claudio Altafini,et al. Modeling and Control of Quantum Systems: An Introduction , 2012, IEEE Transactions on Automatic Control.
[6] Massimiliano F. Sacchi. Maximum-likelihood reconstruction of completely positive maps , 2001 .
[7] Wojciech Daniel. Book Review: States, effects and operations. Fundamental notions of quantum theory. Karl Kraus Lectures in Mathematical Physics at the University of Texas at Austin. Lecture Notes in Physics 190, Springer-Verlag, Berlin-Heidelberg, 1983 IX+151 pp., 17 refs. , 1986 .
[8] Matteo G. A. Paris,et al. Quorum of observables for universal quantum estimation , 2001 .
[9] Martin Plesch,et al. Process reconstruction: From unphysical to physical maps via maximum likelihood , 2005 .
[10] G. Vallone,et al. Experimental quantum process tomography of non-trace-preserving maps , 2010, 1008.5334.
[11] Ruediger Schack,et al. Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.
[12] Daniel A. Lidar,et al. Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.
[13] D. Kaszlikowski,et al. Minimal qubit tomography , 2004, quant-ph/0405084.
[14] P. Villoresi,et al. Experimental verification of the feasibility of a quantum channel between space and Earth , 2008, 0803.1871.
[15] Zdeněk Hradil,et al. Maximum-likelihood estimation of quantum processes , 2001, OFC 2001.
[16] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[17] J. P. Woerdman,et al. Maximum-likelihood estimation of Mueller matrices. , 2005, Optics letters.