A quartic B-spline based explicit time integration scheme for structural dynamics with controllable numerical dissipation

[1]  Alper Korkmaz,et al.  Quartic and quintic B-spline methods for advection-diffusion equation , 2016, Appl. Math. Comput..

[2]  W. Wen,et al.  A novel time integration method for structural dynamics utilizing uniform quintic B-spline functions , 2015 .

[3]  K. Jian,et al.  An explicit time integration method for structural dynamics using septuple B‐spline functions , 2014 .

[4]  K. Bathe,et al.  An explicit time integration scheme for the analysis of wave propagations , 2013 .

[5]  K. Jian,et al.  2D numerical manifold method based on quartic uniform B-spline interpolation and its application in thin plate bending , 2013 .

[6]  Saeed Shojaee,et al.  A parabolic acceleration time integration method for structural dynamics using quartic B-spline functions , 2012 .

[7]  Alexander V. Idesman,et al.  A new high-order accurate continuous Galerkin method for linear elastodynamics problems , 2007 .

[8]  K. Bathe Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme , 2007 .

[9]  M. Guddati,et al.  Dispersion-reducing finite elements for transient acoustics , 2005 .

[10]  B T Rosson,et al.  Higher-Order Implicit Dynamic Time Integration Method , 2005 .

[11]  T. Fung,et al.  Numerical dissipation in time-step integration algorithms for structural dynamic analysis , 2003 .

[12]  G. R. Johnson,et al.  Damping algorithms and effects for explicit dynamics computations , 2001 .

[13]  Kumar K. Tamma,et al.  A theory of development and design of generalized integration operators for computational structural dynamics , 2001 .

[14]  Wanming Zhai,et al.  TWO SIMPLE FAST INTEGRATION METHODS FOR LARGE‐SCALE DYNAMIC PROBLEMS IN ENGINEERING , 1996 .

[15]  Jintai Chung,et al.  Explicit time integration algorithms for structural dynamics with optimal numerical dissipation , 1996 .

[16]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[17]  K. Bathe Finite Element Procedures , 1995 .

[18]  Jintai Chung,et al.  A new family of explicit time integration methods for linear and non‐linear structural dynamics , 1994 .

[19]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[20]  G. Rio,et al.  Numerical damping of spurious oscillations: a comparison between the bulk viscosity method and the explicit dissipative Tchamwa–Wielgosz scheme , 2013 .

[21]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[22]  M. Dokainish,et al.  A survey of direct time-integration methods in computational structural dynamics—I. Explicit methods , 1989 .

[23]  T. Hughes,et al.  Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics , 1978 .

[24]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .