On the temperature dependence of dual‐junction laser power converters
暂无分享,去创建一个
Gerald Siefer | Michael Schachtner | Andreas W. Bett | Simon P. Philipps | Henning Helmers | A. Bett | S. Philipps | G. Siefer | M. Schachtner | H. Helmers | S. Kasimir Reichmuth | S. Reichmuth
[1] David Lackner,et al. D1.4 - Photovoltaic Cells with Increased Voltage Output for Optical Power Supply of Sensor Electronics , 2015 .
[2] A. Bett,et al. Influence of temperature and irradiance on triple-junction solar subcells , 2013 .
[3] A. Bett,et al. Calibration of III-V Concentrator Cells and Modules , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.
[4] M. M. Werneck,et al. Hybrid Optoelectronic Sensor for Current and Temperature Monitoring in Overhead Transmission Lines , 2012, IEEE Sensors Journal.
[5] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors , 1967 .
[6] Matthew M. Wilkins,et al. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures , 2016 .
[7] Alexandre W. Walker,et al. Optimal laser wavelength for efficient laser power converter operation over temperature , 2016 .
[8] Wilhelm Warta,et al. Spectral mismatch correction and spectrometric characterization of monolithic III–V multi‐junction solar cells , 2002 .
[9] R. Hoheisel,et al. Experimental Analysis of Majority Carrier Transport Processes at Heterointerfaces in Photovoltaic Devices , 2012, IEEE Journal of Photovoltaics.
[10] Eli Yablonovitch,et al. Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures , 1993 .
[11] J Metzdorf. Calibration of solar cells. 1: The differential spectral responsivity method. , 1987, Applied optics.
[12] A. Bett,et al. Nonradiative lifetime extraction using power-dependent relative photoluminescence of III-V semiconductor double-heterostructures , 2016 .
[13] Fachbereich Physik. Analyse des Leistungsverhaltens von Mehrfachsolarzellen unter realen Einsatzbedingungen , 2010 .
[14] F. Dimroth,et al. III–V solar cells under monochromatic illumination , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.
[15] J. Schermer,et al. Anomalous IV-characteristics of a GaAs solar cell under high irradiance , 2012 .
[16] Gerald Siefer,et al. Improved grating monochromator set-up for EQE measurements of multi-junction solar cells , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).
[17] Alexandre W. Walker,et al. Impact of Photon Recycling on GaAs Solar Cell Designs , 2015, IEEE Journal of Photovoltaics.
[18] R. Sudharsanan,et al. A 53% High Efficiency GaAs Vertically Integrated Multi-junction Laser Power Converter , 2007, 2007 65th Annual Device Research Conference.
[19] W. B. Spillman,et al. Optically powered and interrogated rotary position sensor for aircraft engine control applications , 1992 .
[20] Gerald Siefer,et al. Analyse des Leistungsverhaltens von Mehrfachsolarzellen unter realen Einsatzbedingungen , 2008 .
[21] Frank Dimroth,et al. GaAs converters for high power densities of laser illumination , 2008 .
[22] Wilhelm Warta,et al. Spectral response measurements of monolithic GaInP/Ga(In)As/Ge triple‐junction solar cells: Measurement artifacts and their explanation , 2003 .
[23] Wilhelm Stork,et al. Reliable and lightning‐safe monitoring of wind turbine rotor blades using optically powered sensors , 2014 .
[24] T. Moriarty,et al. Algorithm for building a spectrum for NREL's One-Sun Multi-Source Simulator , 2012, 2012 38th IEEE Photovoltaic Specialists Conference.
[25] Yoon-Kyu Song,et al. An Implantable Neural Sensing Microsystem with Fiber-Optic Data Transmission and Power Delivery , 2013, Sensors.
[26] C. Algora,et al. The influence of monolithic series connection on the efficiency of GaAs photovoltaic converters for monochromatic illumination , 2001 .
[27] M Dreschmann,et al. Optically powered fiber networks. , 2008, Optics express.
[28] E. Oliva,et al. High-Voltage GaAs Photovoltaic Laser Power Converters , 2009, IEEE Transactions on Electron Devices.