Variational Autoencoders Pursue PCA Directions (by Accident)

The Variational Autoencoder (VAE) is a powerful architecture capable of representation learning and generative modeling. When it comes to learning interpretable (disentangled) representations, VAE and its variants show unparalleled performance. However, the reasons for this are unclear, since a very particular alignment of the latent embedding is needed but the design of the VAE does not encourage it in any explicit way. We address this matter and offer the following explanation: the diagonal approximation in the encoder together with the inherent stochasticity force local orthogonality of the decoder. The local behavior of promoting both reconstruction and orthogonality matches closely how the PCA embedding is chosen. Alongside providing an intuitive understanding, we justify the statement with full theoretical analysis as well as with experiments.

[1]  Joelle Pineau,et al.  A Deep Reinforcement Learning Chatbot , 2017, ArXiv.

[2]  Hedvig Kjellström,et al.  Advances in Variational Inference , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Max Welling,et al.  Improved Variational Inference with Inverse Autoregressive Flow , 2016, NIPS 2016.

[4]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[5]  Joshua B. Tenenbaum,et al.  Deep Convolutional Inverse Graphics Network , 2015, NIPS.

[6]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[7]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[8]  H. Bourlard,et al.  Auto-association by multilayer perceptrons and singular value decomposition , 1988, Biological Cybernetics.

[9]  Jürgen Schmidhuber,et al.  Learning Factorial Codes by Predictability Minimization , 1992, Neural Computation.

[10]  Roger B. Grosse,et al.  Isolating Sources of Disentanglement in Variational Autoencoders , 2018, NeurIPS.

[11]  Yoshua Bengio,et al.  Disentangling Factors of Variation via Generative Entangling , 2012, ArXiv.

[12]  Bernhard Schölkopf,et al.  Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations , 2018, ICML.

[13]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[14]  Jordi Bonada,et al.  Modeling and Transforming Speech Using Variational Autoencoders , 2016, INTERSPEECH.

[15]  David P. Wipf,et al.  Diagnosing and Enhancing VAE Models , 2019, ICLR.

[16]  Andriy Mnih,et al.  Disentangling by Factorising , 2018, ICML.

[17]  Jan Peters,et al.  Stable reinforcement learning with autoencoders for tactile and visual data , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[18]  Matt J. Kusner,et al.  Grammar Variational Autoencoder , 2017, ICML.

[19]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Danica Kragic,et al.  Deep predictive policy training using reinforcement learning , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[21]  Bernhard Schölkopf,et al.  From Variational to Deterministic Autoencoders , 2019, ICLR.

[22]  Alexander A. Alemi,et al.  Fixing a Broken ELBO , 2017, ICML.

[23]  LinLin Shen,et al.  Deep Feature Consistent Variational Autoencoder , 2016, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).

[24]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[25]  Sebastian Nowozin,et al.  Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks , 2017, ICML.

[26]  Christopher Burgess,et al.  DARLA: Improving Zero-Shot Transfer in Reinforcement Learning , 2017, ICML.

[27]  Sebastian Nowozin,et al.  ISA-VAE: Independent Subspace Analysis with Variational Autoencoders , 2018 .

[28]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[29]  Xiaogang Wang,et al.  Deep Learning Face Attributes in the Wild , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[30]  Alex Graves,et al.  DRAW: A Recurrent Neural Network For Image Generation , 2015, ICML.

[31]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[32]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[33]  Sergey Levine,et al.  Visual Reinforcement Learning with Imagined Goals , 2018, NeurIPS.

[34]  B. AfeArd CALCULATING THE SINGULAR VALUES AND PSEUDOINVERSE OF A MATRIX , 2022 .

[35]  Daan Wierstra,et al.  Towards Conceptual Compression , 2016, NIPS.

[36]  Guillaume Desjardins,et al.  Understanding disentangling in β-VAE , 2018, ArXiv.

[37]  Daan Wierstra,et al.  One-Shot Generalization in Deep Generative Models , 2016, ICML.

[38]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.

[39]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[40]  Yee Whye Teh,et al.  Disentangling Disentanglement in Variational Autoencoders , 2018, ICML.

[41]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[42]  Zhiting Hu,et al.  Improved Variational Autoencoders for Text Modeling using Dilated Convolutions , 2017, ICML.

[43]  Karl Ridgeway,et al.  A Survey of Inductive Biases for Factorial Representation-Learning , 2016, ArXiv.

[44]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[45]  Bin Dai,et al.  Hidden Talents of the Variational Autoencoder. , 2017 .

[46]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.