Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications

A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’.

[1]  J. Crowe,et al.  Studies on acarine cuticles—II. Plastron respiration and levitation in a water mite , 1974 .

[2]  W. Barthlott,et al.  Nanostructure of epicuticular plant waxes: Self-assembly of wax tubules , 2009 .

[3]  Jan Genzer,et al.  Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review , 2006, Biofouling.

[4]  Wilhelm Barthlott,et al.  Superhydrophobicity in perfection: the outstanding properties of the lotus leaf , 2011, Beilstein journal of nanotechnology.

[5]  J. M. Bush,et al.  The hydrodynamics of water strider locomotion , 2003, Nature.

[6]  A. Giacomello,et al.  Unraveling the Salvinia Paradox: Design Principles for Submerged Superhydrophobicity , 2015, 1612.01769.

[7]  Carsten Werner,et al.  The springtail cuticle as a blueprint for omniphobic surfaces. , 2016, Chemical Society reviews.

[8]  Wilhelm Barthlott,et al.  Biomimetic replicas: Transfer of complex architectures with different optical properties from plant surfaces onto technical materials. , 2009, Acta biomaterialia.

[9]  D. Köhler Notes on the diving behaviour of the water shrew, Neomys fodiens (Mammalia, Soricidae) , 1991 .

[10]  K. Wandelt,et al.  Structural analysis of wheat wax (Triticum aestivum, c.v. ‘Naturastar’ L.): from the molecular level to three dimensional crystals , 2005, Planta.

[11]  P. Gennes,et al.  Capillarity and Wetting Phenomena , 2004 .

[12]  R. Hanlin,et al.  Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism. , 2005, Mycologia.

[13]  J. M. Fernandez,et al.  Copper(II) complexes of schiff bases derived of 2-hydroxy-3-naphthaldehyde. The crystal and molecular structures of bis-{(phenyl)[(2-oxo-3H-naphth-3-ylidene)methyl]aminato}copper(II) and bis-{(benzene-4-trifluoromethyl)[(2-oxo-3H-naphth-3-ylidene)-methyl]aminato}copper(II) , 1994 .

[14]  Y. Sakai,et al.  Wax ester production by bacteria. , 2003, Current opinion in microbiology.

[15]  Thomas Schimmel,et al.  The Salvinia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water , 2010, Advanced materials.

[16]  J. Aizenberg,et al.  Mobile Interfaces: Liquids as a Perfect Structural Material for Multifunctional, Antifouling Surfaces , 2014 .

[17]  D. F. Cutler,et al.  Regular ArticleClassification and terminology of plant epicuticular waxes , 1998 .

[18]  H. E. Hinton Plastron respiration in bugs and beetles , 1976 .

[19]  B. Widom Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2003 .

[20]  Kostya Ostrikov,et al.  Superhydrophobic amorphous carbon/carbon nanotube nanocomposites , 2009 .

[21]  Bharat Bhushan,et al.  Diversity of structure, morphology and wetting of plant surfaces , 2008 .

[22]  W. Barthlott,et al.  Orchid seed diversity : a scanning electron microscopy survey , 2014 .

[23]  E. Snelling,et al.  Gas exchange and dive characteristics of the free-swimming backswimmer Anisops deanei , 2015, Journal of Experimental Biology.

[24]  R. Jetter,et al.  Composition of Plant Cuticular Waxes , 2007 .

[25]  Carsten Werner,et al.  Diversity and potential correlations to the function of Collembola cuticle structures , 2012, Zoomorphology.

[26]  F. Guillain,et al.  Atomic force microscopy study of isolated ivy leaf cuticles observed directly and after embedding in Epon®. , 1996, The New phytologist.

[27]  Bin Wang,et al.  The deepest divergences in land plants inferred from phylogenomic evidence , 2006, Proceedings of the National Academy of Sciences.

[28]  P. Vogel Body temperature and fur quality in swimming water-shrews, Neomys fodiens (Mammalia, Insectivora) , 1990 .

[29]  H. Szaniawski,et al.  Nematophytes from the Lower Devonian of Podolia, Ukraine , 2016 .

[30]  Erik S. Schneider,et al.  Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention , 2011, Beilstein journal of nanotechnology.

[31]  Bharat Bhushan,et al.  Structure and mechanical properties of beetle wings: a review , 2012 .

[32]  Charles W. Heckman,et al.  Comparative morphology of arthropod exterior surfaces with the capability of binding a film of air underwater , 1983 .

[33]  C. Jeffree,et al.  The Fine Structure of the Plant Cuticle , 2007 .

[34]  W. Barthlott,et al.  Mimicry and ultrastructural analogy between the semi-aquatic grasshopper Paulinia acuminata (Orthoptera: Pauliniidae) and its foodplant, the water-fern Salvinia auriculata (Filicatae: Salviniaceae) , 1994 .

[35]  H. Bleckmann,et al.  Non-Contaminating Camouflage: Multifunctional Skin Microornamentation in the West African Gaboon Viper (Bitis rhinoceros) , 2014, PloS one.

[36]  M. Farzaneh,et al.  Anti-icing performance of superhydrophobic surfaces , 2011 .

[37]  W. Barthlott,et al.  Dry in the Water: The Superhydrophobic Water Fern Salvinia – a Model for Biomimetic Surfaces , 2009 .

[38]  U. Rascher,et al.  Functional characteristics of corticolous lichens in the understory of a tropical lowland rain forest. , 2006, The New phytologist.

[39]  W. Barthlott,et al.  Classification of trichome types within species of the water fern Salvinia, and ontogeny of the egg-beater trichomes , 2009 .

[40]  Yoshimichi Hagiwara,et al.  Turbulence modification by compliant skin and strata-corneas desquamation of a swimming dolphin , 2004 .

[41]  Andreas Solga,et al.  The dream of staying clean: Lotus and biomimetic surfaces , 2007, Bioinspiration & biomimetics.

[42]  P. Wettstein-knowles Waxes, Cutin, and Suberin , 2018 .

[43]  R. Jetter,et al.  Epicuticular crystals of nonacosan-10-ol: In-vitro reconstitution and factors influencing crystal habits , 1994, Planta.

[44]  N. Hallam,et al.  The leaf waxes of the genus Eucalyptus L'Héritier , 1970 .

[45]  M. Wolter,et al.  Quantitative evaluation of epicuticular wax alterations as induced by surfactant treatment , 1991 .

[46]  L. Schreiber Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. , 2005, Annals of botany.

[47]  R. Jetter,et al.  In vitro Reconstitution of Epicuticular Wax Crystals: Formation of Tubular Aggregates by Long‐Chain Secondary Alkanediols , 1995 .

[48]  W. Barthlott,et al.  Chemical Composition and Recrystallization of Epicuticular Waxes: Coiled Rodlets and Tubules , 2000 .

[49]  R. Full,et al.  Evidence for van der Waals adhesion in gecko setae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  E. A. Baker,et al.  ULTRASTRUCTURE AND RECRYSTALLIZATION OF PLANT EPICUTICULAR WAXES , 1975 .

[51]  N. Andersen,et al.  THE MARINE INSECT HALOBATES (HETEROPTERA: GERRIDAE): BIOLOGY, ADAPTATIONS, DISTRIBUTION, AND PHYLOGENY , 2004 .

[52]  J. Wessels Fungal hydrophobins: proteins that function at an interface , 1996 .

[53]  W. Barthlott,et al.  Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. , 2003, Journal of experimental botany.

[54]  Hendrik Bargel,et al.  Plant cuticles: Multifunctional interfaces between plant and environment , 2004 .

[55]  P. Ehrlich,et al.  Accelerated modern human–induced species losses: Entering the sixth mass extinction , 2015, Science Advances.

[56]  R. Stark,et al.  The Cutin Biopolymer Matrix , 2007 .

[57]  S. Lau,et al.  Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. , 2005, The journal of physical chemistry. B.

[58]  C. Neinhuis,et al.  Biologically Inspired Omniphobic Surfaces by Reverse Imprint Lithography , 2014, Advanced materials.

[59]  F. Barth Sinne und Verhalten : aus dem Leben einer Spinne , 2001 .

[60]  R. Cerbino Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2006 .

[61]  David Grémillet,et al.  Unusual feather structure allows partial plumage wettability in diving great cormorants Phalacrocorax carbo , 2005 .

[62]  Travis Hoppe,et al.  Hydrophobicity of myxomycete spores: An undescribed aspect of spore ornamentation , 2014 .

[63]  Stephan Herminghaus,et al.  How plants keep dry: a physicist's point of view. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[64]  W. Barthlott,et al.  Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure. , 2014, Integrative and comparative biology.

[65]  Wilhelm Barthlott,et al.  Wettability and Contaminability of Insect Wings as a Function of Their Surface Sculptures , 1996 .

[66]  W. Barthlott,et al.  Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. , 2011, Advances in colloid and interface science.

[67]  Wilhelm Barthlott,et al.  Epidermal and seed surface characters of plants: systematic applicability and some evolutionary aspects , 1981 .

[68]  B. Bhushan,et al.  Multifunctional Plant Surfaces and Smart Materials , 2010 .

[69]  M. Bellon-Fontaine,et al.  CHARACTERISATION OF THE WETTABILITY OF ORGANIC SUBSTRATES (PEAT AND COMPOSTED BARK) BY ADSORPTION MEASUREMENTS , 1999 .

[70]  L. Schreiber,et al.  Protecting against water loss: analysis of the barrier properties of plant cuticles. , 2001, Journal of experimental botany.

[71]  W. Barthlott,et al.  Hierarchically sculptured plant surfaces and superhydrophobicity. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[72]  Wilhelm Barthlott,et al.  Chemistry and Crystal Growth of Plant Wax Tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) Leaves on Technical Substrates , 2006 .

[73]  W. Shiu,et al.  Bioconcentration of polybrominated benzenes and biphenyls and related superhydrophobic chemicals in fish: Role of bioavailability and elimination into the feces , 1989 .

[74]  L. Graham,et al.  Resistant tissues of modern marchantioid liverworts resemble enigmatic Early Paleozoic microfossils. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Wilhelm Barthlott,et al.  Self‐Assembly of Epicuticular Waxes on Living Plant Surfaces by Atomic Force Microscopy , 2003 .

[76]  A. Heredia,et al.  Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer. , 2003, Biochimica et biophysica acta.

[77]  R. Hughes,et al.  Drag reduction by air release promotes fast ascent in jumping emperor penguins—a novel hypothesis , 2011 .

[78]  R. Hamilton Waxes : chemistry, molecular biology and functions , 1995 .

[79]  Peter Walzel,et al.  Wetting and self-cleaning properties of artificial superhydrophobic surfaces. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[80]  P. J. Holloway Plant Cuticles: Physicochemical Characteristics and Biosynthesis , 1994 .

[81]  Huajian Gao,et al.  Mechanics of hierarchical adhesion structures of geckos , 2005 .

[82]  Lei Jiang,et al.  Directional adhesion of superhydrophobic butterfly wings. , 2007, Soft matter.

[83]  Juntao Wu,et al.  Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. , 2012, Nanoscale.

[84]  K. Mittal Contact angle, wettability and adhesion. , 2003 .

[85]  G. Anilkumar,et al.  Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods , 2016, Scientific Reports.

[86]  Pamela S Soltis,et al.  From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes , 2014, BMC Evolutionary Biology.

[87]  Carsten Werner,et al.  Wetting resistance at its topographical limit: the benefit of mushroom and serif T structures. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[88]  Shreerang S. Chhatre,et al.  Quantification of feather structure, wettability and resistance to liquid penetration , 2014, Journal of The Royal Society Interface.

[89]  B. Mazzolai,et al.  3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography , 2015, ACS applied materials & interfaces.

[90]  Bharat Bhushan,et al.  Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology , 2012 .

[91]  Xi-Qiao Feng,et al.  Superior water repellency of water strider legs with hierarchical structures: experiments and analysis. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[92]  W. Thorpe,et al.  Studies on plastron respiration; the orientation responses of Aphelocheirus [Hemiptera, Aphelocheiridae (Naucoridae)] in relation to plastron respiration; together with an account of specialized pressure receptors in aquatic insects. , 1947, The Journal of experimental biology.

[93]  T. Darmanin,et al.  Superhydrophobic and superoleophobic properties in nature , 2015 .

[94]  Lei Zhai,et al.  Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. , 2006, Nano letters.

[95]  W. Barthlott,et al.  Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[96]  V. Castaño,et al.  Microstructural characterisation of keratin fibres from chicken feathers , 2005 .

[97]  Di Gao,et al.  Anti-icing superhydrophobic coatings. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[98]  Wilhelm Barthlott,et al.  Classification and terminology of plant epicuticular waxes , 1998 .

[99]  C. Brongniart Recherches pour servir à l'histoire des insectes fossiles des temps primaires, précédées d'une étude sur la nervation des ailes des insectes ... / par Charles Brongniart, ... , 1893 .

[100]  S. Moon,et al.  Repellency of the lotus leaf: contact angles, drop retention, and sliding angles. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[101]  P. M. Foegeding,et al.  Hydrophobicity of Bacillus and Clostridium spores , 1990, Applied and environmental microbiology.

[102]  W. Barthlott,et al.  The site of beta-chitin fibril formation in centric diatoms. I. Pores and fibril formation. , 1979, Journal of ultrastructure research.

[103]  J. Wendt,et al.  Archaeopteris is the earliest known modern tree , 1999, Nature.

[104]  R. Jetter,et al.  First steps in understanding the export of lipids to the plant cuticle , 2005 .

[105]  H. Bouwman,et al.  Water repellency and feather structure of the Blue Swallow Hirundo atrocaerulea , 2000 .

[106]  W. Barthlott,et al.  Elasticity of the hair cover in air-retaining Salvinia surfaces , 2015 .

[107]  P. Kolattukudy Polyesters in higher plants. , 2001, Advances in biochemical engineering/biotechnology.

[108]  Carsten Werner,et al.  Smart Skin Patterns Protect Springtails , 2011, PloS one.

[109]  W. Barthlott,et al.  Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM). , 2004, Journal of experimental botany.

[110]  Wilhelm Barthlott,et al.  Dry under water: Comparative morphology and functional aspects of air‐retaining insect surfaces , 2011, Journal of morphology.

[111]  Michael I. Newton,et al.  Immersed superhydrophobic surfaces: Gas exchange, slip and drag reduction properties , 2010 .

[112]  D. Woermann,et al.  Physical conditions for trapping air by a microtrichia-covered insect cuticle during temporary submersion , 2009, Naturwissenschaften.

[113]  C. Gu,et al.  Morphology modulating the wettability of a diamond film. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[114]  K. Oh,et al.  Superhydrophobic Transparent Surface of Nanostructured Poly(Methyl Methacrylate) Enhanced by a Hydrolysis Reaction , 2013 .

[115]  W. Barthlott,et al.  Applying Methods from Differential Geometry to Devise Stable and Persistent Air Layers Attached to Objects Immersed in Water , 2009 .

[116]  Julie Gould Learning from nature's best , 2015, Nature.

[117]  J. Damsté,et al.  Biomarker lipids of the freshwater fern Azolla and its fossil counterpart from the Eocene Arctic Ocean , 2009 .

[118]  W. Barthlott,et al.  Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies. , 2006, Chemistry and physics of lipids.

[119]  R. Honegger,et al.  The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. , 2013, The New phytologist.

[120]  Ce Jeffree,et al.  The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution , 1986 .

[121]  B. Bhushan Springer Handbook of Nanotechnology , 2017 .

[122]  N. Butterfield,et al.  A new view on Nematothallus: coralline red algae from the Silurian of Gotland , 2013 .

[123]  L. Schreiber,et al.  Water and solute permeability of plant cuticles , 2009 .

[124]  G. McHale,et al.  A lichen protected by a super-hydrophobic and breathable structure. , 2006, Journal of plant physiology.

[125]  T. Hürter,et al.  Adaptive Haarstrukturen bei Wasserspitzmäusen (Insectivora, Soricinae) , 1980 .

[126]  S. Gorb Attachment Devices of Insect Cuticle , 2001, Springer Netherlands.

[127]  Bharat Bhushan,et al.  Multifunctional surface structures of plants: An inspiration for biomimetics , 2009 .

[128]  W. Franke Ectodesmata and the cuticular penetration of leaves , 1970 .

[129]  David L. Hu,et al.  Meniscus-climbing insects , 2005, Nature.

[130]  Jin Zhai,et al.  Super‐Hydrophobic Surfaces: From Natural to Artificial , 2002 .

[131]  W. Barthlott,et al.  Biodiversity and technical innovations: bionics , 2014 .

[132]  Wilhelm Barthlott,et al.  Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces , 1997 .

[133]  A. Parker,et al.  Water capture by a desert beetle , 2001, Nature.

[134]  W. Barthlott,et al.  Bionics and Biodiversity – Bio-inspired Technical Innovation for a Sustainable Future , 2016 .

[135]  Sindy K. Y. Tang,et al.  Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.

[136]  R. N. Wenzel RESISTANCE OF SOLID SURFACES TO WETTING BY WATER , 1936 .

[137]  P. Berg,et al.  Modern maize varieties going local in the semi-arid zone in Tanzania , 2014, BMC Evolutionary Biology.

[138]  W. Barthlott,et al.  A fast, precise and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial surfaces , 2008, Bioinspiration & biomimetics.

[139]  H. Wösten,et al.  Hydrophobins: multipurpose proteins. , 2001, Annual review of microbiology.

[140]  Shu Yang,et al.  Self-assembly of nanostructures towards transparent, superhydrophobic surfaces , 2013 .

[141]  T. Taylor,et al.  Four hundred-million-year-old vesicular arbuscular mycorrhizae. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[142]  J. D. Leeuw,et al.  Solvent-extractable lipids in an acid andic forest soil; variations with depth and season , 2004 .

[143]  W. Barthlott,et al.  Movement and regeneration of epicuticular waxes through plant cuticles , 2001, Planta.

[144]  E. Wollenweber Exkret-Flavonoide bei Blütenpflanzen und Farnen , 1989, Naturwissenschaften.

[145]  S. Hardt,et al.  Inscribing Wettability Gradients Onto Superhydrophobic Carbon Nanotube Surfaces , 2014 .

[146]  L. Leff,et al.  Characterization of Hydrophobic Stream Bacteria Based on Adhesion to n-Octane , 1997 .

[147]  Chad M. Eliason,et al.  Decreased hydrophobicity of iridescent feathers: a potential cost of shiny plumage , 2011, Journal of Experimental Biology.

[148]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[149]  W. Barthlott,et al.  The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness , 2015, Beilstein journal of nanotechnology.

[150]  Wilhelm Barthlott,et al.  Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces , 2014, Beilstein journal of nanotechnology.

[151]  W. Barthlott,et al.  Synthesis of (S)‐Nonacosan‐10‐ol, the Major Component of Tubular Plant Wax Crystals , 2007 .

[152]  Michael Nosonovsky Materials science: Slippery when wetted , 2011, Nature.

[153]  S. Gorb,et al.  Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state , 2013, Proceedings of the Royal Society B: Biological Sciences.

[154]  W. Barthlott,et al.  Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability , 2006 .

[155]  W. Barthlott,et al.  Droplets on superhydrophobic surfaces: visualization of the contact area by cryo-scanning electron microscopy. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[156]  Hendrik Bargel,et al.  Structure-function relationships of the plant cuticle and cuticular waxes - a smart material? , 2006, Functional plant biology : FPB.

[157]  W. Barthlott,et al.  ULTRASTRUCTURE, CHEMICAL COMPOSITION, AND RECRYSTALLIZATION OF EPICUTICULAR WAXES : TRANSVERSELY RIDGED RODLETS , 1999 .

[158]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[159]  R. Shakesby,et al.  Soil water repellency: its causes, characteristics and hydro-geomorphological significance , 2000 .

[160]  C. Neinhuis,et al.  Tunable nano-replication to explore the omniphobic characteristics of springtail skin , 2013 .

[161]  P. Kolattukudy Plant Cuticle and Suberin , 2001 .

[162]  U. Hiller Water Repellence in Gecko Skin: How Do Geckos Keep Clean? , 2009 .

[163]  Gareth H. McKinley,et al.  Superhydrophobic Carbon Nanotube Forests , 2003 .