Combined use of proton-proton Overhauser enhancements and a distance geometry algorithm for determination of polypeptide conformations. Application to micelle-bound glucagon.

In a new approach for the determination of polypeptide conformation, experimental data on intramolecular distances between pairs of hydrogen atoms obtained from nuclear Overhauser enhancement studies are used as input for a distance geometry algorithm. The algorithm determines the limits of the conformation space occupied by the polypeptide chain. The experimental data are used in such a way that the real conformation should in all cases be within these limits. Two important features of the method are that the results do not depend critically on the accuracy of the distance measurements by nuclear Overhauser enhancement studies and that internal mobility of the polypeptide conformation is explicitly taken into consideration. The use of this new procedure is illustrated with a structural study of the region 19-27 of glucagon bound to perdeuterated dodecylphosphocholine micelles.

[1]  A. Dubs,et al.  Individual assignments of amide proton resonances in the proton NMR spectrum of the basic pancreatic trypsin inhibitor. , 1979, Biochimica et biophysica acta.

[2]  K. Wuethrich,et al.  Transient proton-proton Overhauser effects in horse ferrocytochrome c , 1978 .

[3]  C. Jones,et al.  The quantitation of nuclear Overhauser effect methods for total conformational analysis of peptides in solution. Application to gramicidin S. , 1978, Biophysical journal.

[4]  Ian J. Tickle,et al.  X-ray analysis of glucagon and its relationship to receptor binding , 1975, Nature.

[5]  B. S. Snowden,et al.  Nuclear Spin–Lattice Relaxation in Axially Symmetric Ellipsoids with Internal Motion , 1969 .

[6]  D. K. Faddeev,et al.  Numerische Methoden der linearen Algebra , 1970 .

[7]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[8]  E. Stiefel,et al.  Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems , 1959 .

[9]  K. Wüthrich,et al.  Physicochemical characterization of glucagon-containing lipid micelles. , 1980, Biochimica et biophysica acta.

[10]  O Jardetzky,et al.  On the nature of molecular conformations inferred from high-resolution NMR. , 1980, Biochimica et biophysica acta.

[11]  J. H. Noggle The nuclear Overhauser effect , 1971 .

[12]  H. Scheraga,et al.  Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids , 1975 .

[13]  K Wüthrich,et al.  A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. , 1980, Biochemical and biophysical research communications.

[14]  Kurt Wüthrich,et al.  The use of cross-sections and of projections in two-dimensional NMR spectroscopy , 1978 .

[15]  Use of proton nuclear Overhauser effects for the determination of the conformations of amino acid residues in oligopeptides. , 1977, Biochemical and biophysical research communications.

[16]  Kurt Wüthrich,et al.  NMR in biological research: Peptides and proteins , 1976 .

[17]  Irwin D. Kuntz,et al.  Effects of distance constraints on macromolecular conformation. II. Simulation of experimental results and theoretical predictions , 1979 .

[18]  K. Wüthrich,et al.  Nuclear magnetic resonance of labile protons in the basic pancreatic trypsin inhibitor. , 1979, Journal of molecular biology.

[19]  C Boesch,et al.  1H nuclear-magnetic-resonance studies of the molecular conformation of monomeric glucagon in aqueous solution. , 1978, European journal of biochemistry.

[20]  K. Wüthrich,et al.  Two-dimensional spin echo correlated spectroscopy (SECSY) for 1H NMR studies of biological macromolecules. , 1979, Biochemical and biophysical research communications.

[21]  K. Wüthrich,et al.  Truncated driven nuclear overhauser effect (TOE). A new technique for studies of selective 1H1H overhauser effects in the presence of spin diffusion , 1979 .

[22]  H. Berendsen,et al.  Proton magnetic relaxation and spin diffusion in proteins , 1976 .

[23]  L. R. Brown Use of fully deuterated micelles for conformational studies of membrane proteins by high resolution 1H nuclear magnetic resonance. , 1979, Biochimica et biophysica acta.

[24]  K. Wüthrich,et al.  NOE difference spectroscopy: A novel method for observing individual multiplets in proton NMR spectra of biological macromolecules , 1978 .

[25]  G M Crippen,et al.  Distance constraints on macromolecular conformation. , 2009, International journal of peptide and protein research.

[26]  Gordon M. Crippen,et al.  Stable calculation of coordinates from distance information , 1978 .

[27]  Kurt Wüthrich,et al.  Internal motion in globular proteins , 1978 .

[28]  N. Krishna,et al.  Solution conformation of peptides by the intramolecular nuclear Overhauser effect experiment. Study of valinomycin-K+. , 1978, Biophysical journal.

[29]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[30]  Harold A. Scheraga,et al.  Calculation of the Conformation of cyclo-Hexaglycyl. 2. Application of a Monte-Carlo Method , 1978 .

[31]  A. Bothner‐By,et al.  Specificity of interproton nuclear Overhauser effects in gramicidin-S dissolved in deuterated ethylene glycol. , 1978, Biophysical journal.