Variable Selection as an Instance-Based Ontology Mapping Strategy

The paper presents a novel instance-based approach to aligning concepts taken from two heterogeneous ontologies populated with text documents. We introduce a concept similarity measure based on the size of the intersection of the sets of variables which are most important for the class separation of the instances in both input ontologies. We suggest a VC dimension variable selection criterion elaborated for Support Vector Machines (SVMs), which is novel in the SVMs literature. The study contains results from experiments on real-world text data, where variables are selected using a discriminant analysis framework and standard feature selection techniques for text categorization.

[1]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[2]  Konstantin Todorov,et al.  Ontology Mapping via Structural and Instance-based Similarity Measures , 2008, OM.

[3]  Sayan Mukherjee,et al.  Feature Selection for SVMs , 2000, NIPS.

[4]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[5]  Pedro M. Domingos,et al.  Learning to map between ontologies on the semantic web , 2002, WWW '02.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[8]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[9]  A. Rakotomamonjy,et al.  Sélection de variables par SVM : application à la détection de piétons SVM Variable selection with application to pedestrian detection , 2022 .

[10]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[11]  Stefan Schlobach,et al.  An Empirical Study of Instance-Based Ontology Matching , 2007, ISWC/ASWC.

[12]  Gwenn Englebienne,et al.  Learning Concept Mappings from Instance Similarity , 2008, SEMWEB.

[13]  Gerd Stumme,et al.  FCA-MERGE: Bottom-Up Merging of Ontologies , 2001, IJCAI.

[14]  Georg Groh,et al.  Facilitating the Exchange of Explicit Knowledge through Ontology Mappings , 2001, FLAIRS.

[15]  Martin L. Kersten,et al.  A Graph-Oriented Model for Articulation of Ontology Interdependencies , 1999, EDBT.

[16]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[17]  Mark A. Musen,et al.  Anchor-PROMPT: Using Non-Local Context for Semantic Matching , 2001, OIS@IJCAI.

[18]  Dunja Mladenic,et al.  Feature Subset Selection in Text-Learning , 1998, ECML.

[20]  Jinbo Bi,et al.  Dimensionality Reduction via Sparse Support Vector Machines , 2003, J. Mach. Learn. Res..

[21]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  Alain Rakotomamonjy,et al.  Variable Selection Using SVM-based Criteria , 2003, J. Mach. Learn. Res..

[23]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.