Measurement of arteriolar blood volume in brain tumors using MRI without exogenous contrast agent administration at 7T

Arteriolar cerebral‐blood‐volume (CBVa) is an important perfusion parameter that can be measured using inflow‐based vascular‐space‐occupancy (iVASO) MRI without exogenous contrast agent administration. The purpose of this study is to assess the potential diagnostic value of CBVa in brain tumor patients by comparing it with total‐CBV (including arterial, capillary and venous vessels) measured by dynamic‐susceptibility‐contrast (DSC) MRI.

[1]  R. Buxton,et al.  Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) , 1998 .

[2]  D. Weinberger,et al.  Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques , 1997, Magnetic resonance in medicine.

[3]  R G Blasberg,et al.  Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma intracerebral xenografts. , 1998, Cancer research.

[4]  Nancy J Fischbein,et al.  Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. , 2005, AJNR. American journal of neuroradiology.

[5]  Michael H Lev,et al.  Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. , 2004, AJNR. American journal of neuroradiology.

[6]  Hiroshi Fukuda,et al.  Changes in the Arterial Fraction of Human Cerebral Blood Volume during Hypercapnia and Hypocapnia Measured by Positron Emission Tomography , 2005, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  Anders M. Dale,et al.  Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation , 2007, NeuroImage.

[8]  Linda Knutsson,et al.  Absolute quantification of perfusion using dynamic susceptibility contrast MRI: pitfalls and possibilities , 2010, Magnetic Resonance Materials in Physics, Biology and Medicine.

[9]  G Johnson,et al.  Predicting Grade of Cerebral Glioma Using Vascular-Space Occupancy MR Imaging , 2008, American Journal of Neuroradiology.

[10]  V. Mai,et al.  Extraslice spin tagging (EST) magnetic resonance imaging for the determination of perfusion , 1999, Journal of magnetic resonance imaging : JMRI.

[11]  P. R. Luijten,et al.  Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7‐T quantitative flow MRI , 2015, NMR in biomedicine.

[12]  J. Detre,et al.  Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling , 2000, Magnetic resonance in medicine.

[13]  Peter Jezzard,et al.  Absolute Arterial Cerebral Blood Volume Quantification Using Inflow Vascular-Space-Occupancy with Dynamic Subtraction Magnetic Resonance Imaging , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  Andrew G Webb,et al.  Quantitative assessment of the effects of high‐permittivity pads in 7 Tesla MRI of the brain , 2012, Magnetic resonance in medicine.

[15]  Glyn Johnson,et al.  Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. , 2004, AJNR. American journal of neuroradiology.

[16]  David F Kallmes,et al.  Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. , 2015, Radiology.

[17]  A. Grinvald,et al.  Compartment-Resolved Imaging of Activity-Dependent Dynamics of Cortical Blood Volume and Oximetry , 2005, The Journal of Neuroscience.

[18]  A L Zhou,et al.  Growth of arterioles precedes that of capillaries in stretch-induced angiogenesis in skeletal muscle. , 2001, Microvascular research.

[19]  J L Tanabe,et al.  MR perfusion imaging in human brain using the UNFAIR technique , 1999, Journal of magnetic resonance imaging : JMRI.

[20]  P. Jezzard,et al.  Absolute cerebral blood volume ( CBV ) quantification without contrast agents using inflow vascular-space-occupancy ( iVASO ) with dynamic subtraction , 2008 .

[21]  Norbert Schuff,et al.  Improved arterial spin labeling method: applications for measurements of cerebral blood flow in human brain at high magnetic field MRI. , 2007, Medical physics.

[22]  E F Halpern,et al.  Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. , 1994, Radiology.

[23]  T. Grobner Gadolinium--a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? , 2006, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[24]  J. J. Pekar,et al.  Measuring Absolute Arteriolar Cerebral Blood Volume ( CBVa ) in Human Brain Gray Matter ( GM ) without Contrast Agent , 2008 .

[25]  Jun Hua,et al.  Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent , 2011, NMR in biomedicine.

[26]  Stephan Heckers,et al.  Inflow‐vascular space occupancy (iVASO) reproducibility in the hippocampus and cortex at different blood water nulling times , 2016, Magnetic resonance in medicine.

[27]  H. Shirato,et al.  Measurement of tumor blood flow in head and neck squamous cell carcinoma by pseudo‐continuous arterial spin labeling: Comparison with dynamic contrast‐enhanced MRI , 2015, Journal of magnetic resonance imaging : JMRI.

[28]  Christopher A. Clark,et al.  A Two-Stage Model for In Vivo Assessment of Brain Tumor Perfusion and Abnormal Vascular Structure Using Arterial Spin Labeling , 2013, PloS one.

[29]  Jun Hua,et al.  Elevated arteriolar cerebral blood volume in prodromal Huntington's disease , 2013, Movement disorders : official journal of the Movement Disorder Society.

[30]  A. Ozonoff,et al.  Prediction of Locoregional Control in Head and Neck Squamous Cell Carcinoma with Serial CT Perfusion during Radiotherapy , 2011, American Journal of Neuroradiology.

[31]  N B Smith,et al.  New high dielectric constant materials for tailoring the B1+ distribution at high magnetic fields. , 2010, Journal of magnetic resonance.

[32]  Risto A. Kauppinen,et al.  Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging , 1998, Nature Medicine.

[33]  M. Viergever,et al.  Repeated quantitative perfusion and contrast permeability measurement in the MRI examination of a CNS tumor , 2000, European Radiology.

[34]  A. Brandes,et al.  Prognostic factors for anaplastic astrocytomas , 2007, Journal of Neuro-Oncology.

[35]  J. Helpern,et al.  Perfusion imaging by un-inverted flow-sensitive alternating inversion recovery (UNFAIR). , 1997, Magnetic resonance imaging.

[36]  R K Jain,et al.  Determinants of tumor blood flow: a review. , 1988, Cancer research.

[37]  Peter C M van Zijl,et al.  Oxygenation and hematocrit dependence of transverse relaxation rates of blood at 3T , 2007, Magnetic resonance in medicine.

[38]  Kortaro Tanaka,et al.  Blood Flow Velocity in the Pial Arteries of Cats, with Particular Reference to the Vessel Diameter , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[39]  A. Berger FUNDAMENTALS OF BIOSTATISTICS , 1969 .

[40]  Yan Zhang,et al.  Comparative analysis of arterial spin labeling and dynamic susceptibility contrast perfusion imaging for quantitative perfusion measurements of brain tumors. , 2014, International journal of clinical and experimental pathology.

[41]  Jun Hua,et al.  Implementation of vascular‐space‐occupancy MRI at 7T , 2013, Magnetic resonance in medicine.

[42]  Lone Skov,et al.  Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. , 2006, Journal of the American Society of Nephrology : JASN.

[43]  C. Iadecola,et al.  Glial regulation of the cerebral microvasculature , 2007, Nature Neuroscience.

[44]  H. Shirato,et al.  Measurement of tumor blood flow in head and neck squamous cell carcinoma by pseudo-continuous arterial spin labeling: comparison with dynamic contrast-enhanced MRI. , 2015, Journal of magnetic resonance imaging : JMRI.

[45]  J. Folkman Angiogenesis in cancer, vascular, rheumatoid and other disease , 1995, Nature Medicine.

[46]  B. Rosen,et al.  High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[47]  G Johnson,et al.  Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. , 1999, Radiology.

[48]  A. Bozzao,et al.  Clinical applications of dynamic susceptibility contrast perfusion-weighted MR imaging in brain tumours , 2012, La radiologia medica.

[49]  Esben Thade Petersen,et al.  Cerebral border zones between distal end branches of intracranial arteries: MR imaging. , 2008, Radiology.

[50]  Jinyuan Zhou,et al.  Inflow‐based vascular‐space‐occupancy (iVASO) MRI , 2011, Magnetic resonance in medicine.

[51]  Glyn Johnson,et al.  Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. , 2002, Radiology.

[52]  J. Detre,et al.  Reduced Transit-Time Sensitivity in Noninvasive Magnetic Resonance Imaging of Human Cerebral Blood Flow , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[53]  Seong-Gi Kim,et al.  Arterial versus Total Blood Volume Changes during Neural Activity-Induced Cerebral Blood Flow Change: Implication for BOLD fMRI , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[54]  Karin Markenroth Bloch,et al.  Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours , 2011, Magnetic Resonance Materials in Physics, Biology and Medicine.

[55]  M. van Buchem,et al.  Can arterial spin labeling detect white matter perfusion signal? , 2009, Magnetic resonance in medicine.