Ocean Acidification From Below in the Tropical Pacific

Identifying ocean acidification and its controlling mechanisms is an important priority within the broader question of understanding how sustained anthropogenic CO2 emissions are harming the health of the ocean. Through extensive analysis of observational data products for ocean inorganic carbon, here we quantify the rate at which acidification is proceeding in the western tropical Pacific Warm Pool, revealing −0.0013 ± 0.0001 year−1 for pH and −0.0083 ± 0.0007 year−1 for the saturation index of aragonite for the years 1985–2016. However, the mean rate of total dissolved inorganic carbon increase (+0.81 ± 0.06 μmol · kg−1 · year−1) sustaining acidification was ~20% slower than what would be expected if it were simply controlled by the rate of atmospheric CO2 increase and transmitted through local air‐sea CO2 equilibration. Joint Lagrangian and Eulerian model diagnostics indicate that the acidification of the Warm Pool occurs primarily through the anthropogenic CO2 that invades the ocean in the extra‐tropics is transported to the tropics through the thermocline shallow overturning circulation and then re‐emerges into surface waters within the tropics through the Equatorial Undercurrent from below. An interior residence time of several years to decades, acting in conjunction with the accelerating CO2 growth in the atmosphere, can be expected to contribute to modulating the rate of Warm Pool acidification.

[1]  H. Tsujino,et al.  Acceleration of Ocean Acidification in the Western North Pacific , 2019, Geophysical Research Letters.

[2]  J. Sarmiento,et al.  Emergence of Anthropogenic Signals in the Ocean Carbon Cycle , 2019, Nature Climate Change.

[3]  Maren K. Karlsen,et al.  GLODAPv2.2019 – an update of GLODAPv2 , 2019, Earth System Science Data.

[4]  K. Caldeira,et al.  Carbon dioxide addition to coral reef waters suppresses net community calcification , 2018, Nature.

[5]  J. Sarmiento,et al.  Large Reemergence of Anthropogenic Carbon into the Ocean’s Surface Mixed Layer Sustained by the Ocean’s Overturning Circulation , 2017 .

[6]  Mechanistic Drivers of Reemergence of Anthropogenic Carbon in the Equatorial Pacific , 2017 .

[7]  K. Rodgers,et al.  The formation of the ocean’s anthropogenic carbon reservoir , 2016, Scientific Reports.

[8]  Jacqueline Boutin,et al.  A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT) , 2016 .

[9]  Masao Ishii,et al.  The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean , 2016 .

[10]  K. Rodgers,et al.  Anthropogenic CO2 uptake, transport, storage, and dynamical controls in the ocean imposed by the meridional overturning circulation: A modeling study , 2015 .

[11]  R. Feely,et al.  Climatological distribution of aragonite saturation state in the global oceans , 2015 .

[12]  F. Joos,et al.  Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios , 2015, Science.

[13]  Nicolas Gruber,et al.  Trends and drivers in global surface ocean pH over the past 3 decades , 2015 .

[14]  Toru Suzuki,et al.  Relationships between total alkalinity in surface water and sea surface dynamic height in the Pacific Ocean , 2014 .

[15]  Nicholas R. Bates,et al.  A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification , 2014 .

[16]  Y. Niwa,et al.  Air-sea CO2 flux in the Pacific Ocean for the period 1990-2009 , 2013 .

[17]  L. Bopp,et al.  Role of mode and intermediate waters in future ocean acidification: Analysis of CMIP5 models , 2013 .

[18]  Michael D. DeGrandpre,et al.  Aragonite saturation state dynamics in a coastal upwelling zone , 2013 .

[19]  Jacqueline Boutin,et al.  A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT) , 2012 .

[20]  R. Feely,et al.  Spatiotemporal variability and long-term trends of ocean acidification in the California Current System , 2012 .

[21]  J. B. Miller,et al.  Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years , 2012, Nature.

[22]  Lauretta Burke,et al.  Reefs at Risk Revisited in the Coral Triangle , 2012 .

[23]  J. Pandolfi,et al.  Projecting Coral Reef Futures Under Global Warming and Ocean Acidification , 2011, Science.

[24]  M. Spalding,et al.  Reefs at Risk Revisited , 2011 .

[25]  O. Llinás,et al.  The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004 , 2010 .

[26]  A. Dickson Standards for Ocean Measurements , 2010 .

[27]  H. Inoue,et al.  Decreasing pH trend estimated from 25-yr time series of carbonate parameters in the western North Pacific , 2010 .

[28]  Scott C. Doney,et al.  Ocean Acidification: Present Conditions and Future Changes in a High-CO2 World , 2009 .

[29]  T. Suga,et al.  Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification , 2009 .

[30]  A. Olsen,et al.  Quality control procedures and methods of the CARINA database , 2009 .

[31]  R. Feely,et al.  Spatial variability and decadal trend of the oceanic CO2 in the western equatorial Pacific warm/fresh water , 2009 .

[32]  R. Feely,et al.  Evidence for Upwelling of Corrosive "Acidified" Water onto the Continental Shelf , 2008, Science.

[33]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[34]  R. Steneck,et al.  Coral Reefs Under Rapid Climate Change and Ocean Acidification , 2007, Science.

[35]  Andrew G. Dickson,et al.  Guide to best practices for ocean CO2 measurements , 2007 .

[36]  R. Feely,et al.  Decadal variability of the air‐sea CO2 fluxes in the equatorial Pacific Ocean , 2006 .

[37]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[38]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[39]  D. Schrag,et al.  Radiocarbon as a thermocline proxy for the eastern equatorial Pacific , 2004 .

[40]  Takeshi,et al.  Variability of Surface Layer CO 2 Parameters in the Western and Central Equatorial Pacific , 2004 .

[41]  R. Feely,et al.  Decadal Variation of the Surface Water PCO2 in the Western and Central Equatorial Pacific , 2003, Science.

[42]  W. Kessler,et al.  The Pacific Cold Tongue: A Pathway for Interhemispheric Exchange* , 2003 .

[43]  S. G. Nelson,et al.  Effect of elevated CO2 on the community metabolism of an experimental coral reef , 2003 .

[44]  K. Rodgers,et al.  Extratropical sources of Equatorial Pacific upwelling in an OGCM , 2003 .

[45]  R. Feely,et al.  Distribution of anthropogenic CO2 in the Pacific Ocean , 2002 .

[46]  N. Wells,et al.  Ocean circulation and climate , 2002 .

[47]  S. Speich,et al.  A global diagnostic of interior ocean ventilation , 2002 .

[48]  Fred Wells,et al.  Marine Biodiversity Hotspots and Conservation Priorities for Tropical Reefs , 2002, Science.

[49]  R. Feely,et al.  Distribution of anthropogenic CO 2 in the Pacific Ocean , 2002 .

[50]  R. Fine,et al.  Circulation and ventilation flux of the Pacific Ocean , 2001 .

[51]  Nicolas Gruber,et al.  Denitrification and N2 fixation in the Pacific Ocean , 2001 .

[52]  C. D. Keeling,et al.  Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium , 2000 .

[53]  H. Inoue CO2 Exchange between the Atmosphere and the Ocean: Carbon Cycle Studies of the Meteorological Research Institute Since 1968 , 2000 .

[54]  C. Sabine,et al.  Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean , 1999 .

[55]  R. Feely,et al.  Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation , 1999, Nature.

[56]  Langdon,et al.  Geochemical consequences of increased atmospheric carbon dioxide on coral reefs , 1999, Science.

[57]  R. Feely,et al.  A new automated underway system for making high precision pCO2 measurements onboard research ships , 1998 .

[58]  Frank J. Millero,et al.  Distribution of alkalinity in the surface waters of the major oceans , 1998 .

[59]  D. Wallace,et al.  Program developed for CO{sub 2} system calculations , 1998 .

[60]  T. Stocker,et al.  An improved method for detecting anthropogenic CO2 in the oceans , 1996 .

[61]  H. Inoue,et al.  Air-sea exchange of CO2 in the central and western equatorial Pacific in 1990 , 1995 .

[62]  H. Matsueda,et al.  Long‐term trend of the partial pressure of carbon dioxide (pCO2) in surface waters of the western North Pacific, 1984–1993 , 1995 .

[63]  R. Lukas,et al.  The western equatorial Pacific: A water mass crossroads , 1994 .

[64]  Jorge L. Sarmiento,et al.  Redfield ratios of remineralization determined by nutrient data analysis , 1994 .

[65]  N. Metzl,et al.  Variability of sources and sinks of CO2 in the western Indian and southern oceans during the year 1991 , 1993 .

[66]  R. Wanninkhof,et al.  Measurement of fugacity of CO2 in surface water using continuous and discrete sampling methods , 1993 .

[67]  C. S. Wong,et al.  Changes in equatorial CO2 flux and new production estimated from CO2 and nutrient levels in Pacific surface waters during the 1986/87 El Niño , 1993 .

[68]  Louis I. Gordon,et al.  Oxygen solubility in seawater : better fitting equations , 1992 .

[69]  H. Inoue,et al.  Variations and distributions of CO2 in and over the equatorial Pacific during the period from the 1986/88 El Niño event to the 1988/89 La Niña event* , 1992 .

[70]  Hiroshi Akima,et al.  A method of univariate interpolation that has the accuracy of a third-degree polynomial , 1991, TOMS.

[71]  A. Dickson Standard potential of the reaction: , and and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K , 1990 .

[72]  K. Johnson,et al.  Coulometric TCO2 analyses for marine studies; an introduction , 1985 .

[73]  矢崎 幸生 "water column"について , 1984 .

[74]  A. Mucci The solubility of calcite and aragonite in seawater at various salinities , 1983 .

[75]  Andrew G. Dickson,et al.  The estimation of acid dissociation constants in seawater media from potentionmetric titrations with strong base. I. The ionic product of water — Kw , 1979 .

[76]  R. Weiss Carbon dioxide in water and seawater: the solubility of a non-ideal gas , 1974 .