Simulation and analysis of waveguide based optical integrated circuits

Abstract The employment of single-mode fiber technology, the potentials of coherent optical communication systems, and the novel sensor applications have emphasized the need for integrated optical components, such as couplers, modulators, switches, filters, etc., that are reliable, precise, wavelength selective, and even polarization selective. The design of optimized integrated optical components requires a detailed understanding of the various electromagnetic propagation characteristics of the structures defining the devices. Typical optical structures such as dielectric slab waveguides with junctions, rib waveguides, grating structures, and other dielectric waveguiding geometries could also be made from anisotropic materials, and their properties could be electro-optically altered. In addition to providing optimized design, an accurate method that can simulate the operation of the device allows ways of exploring new concepts. The main objective of this paper is to present the use of these simulation techniques. Three methods for the simulation of the propagation of light through dielectric guiding structures have been considered here. These methods are the finite-difference time-domain (FDTD) method, the coupled-mode theory (CMT) and the beam-propagation method (BPM). The time-explicit FDTD method has been demonstrated to be a very powerful tool in the analysis of arbitrary shaped structures, which may contain abrupt discontinuities in both the propagation and the transverse directions. However, solving an optically long structure by the FDTD method will require a large amount of computer resource. Although the CMT and the BPM are not recommended to analyze a structure with large discontinuities in the propagation direction, they can analyze a long structure very effectively if the transition in the propagation direction is adiabatic. Thus, an optically large (thousands of wavelengths long) structure with bends, junctions, discontinuities, and long guiding structures can be partitioned and solved by a combination of these three techniques. After a review of the various simulation methods for optical circuits, this article focuses on the formulation and the implementation of the FDTD method. Examples are presented on simulations of structures of current practical interest.

[1]  Amnon Yariv,et al.  Guided wave optics , 1974 .

[2]  William H. Press,et al.  Numerical recipes , 1990 .

[3]  Allan W. Snyder,et al.  Fundamental error of recent coupled mode formulations , 1987 .

[4]  David Yevick,et al.  Analysis of forward wide-angle light propagation in semiconductor rib waveguides and integrated-optic structures , 1989 .

[5]  Paul Lagasse,et al.  Beam-propagation method: analysis and assessment , 1981 .

[6]  David E. Merewether,et al.  Transient Currents Induced on a Metallic Body of Revolution by an Electromagnetic Pulse , 1971 .

[7]  R Baets,et al.  Calculation of radiation loss in integrated-optic tapers and Y-junctions. , 1982, Applied optics.

[8]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[9]  J. B. Davies,et al.  A Least-Squares Boundary Residual Method for the Numerical Solution of Scattering Problems , 1973 .

[10]  M. Le Contellec,et al.  Field-effect transistor with diphthalocyanine thin film , 1988 .

[11]  J. B. Davies,et al.  Finite Element Analysis of All Modes in Cavities with Circular Symmetry , 1982 .

[12]  Hermann A. Haus,et al.  Analysis of buried-channel waveguides and couplers: scalar solution and polarization correction , 1990 .

[13]  David Yevick,et al.  Propagating beam analysis of multimode waveguide tapers , 1983 .

[14]  Hermann A. Haus,et al.  Electron beam waves in microwave tubes , 1958 .

[15]  Alan R. Mickelson,et al.  Eigenmode analysis of optical switches in LiNbO/sub 3/-theory and experiments , 1988 .

[16]  D. Marcuse Light transmission optics , 1972 .

[17]  L. Thylen,et al.  Crosstalk and switching characteristics in directional couplers , 1988 .

[18]  W. B. Bridges,et al.  Computer Analysis of Dielectric Waveguides: A Finite-Difference Method , 1984 .

[19]  A. Bayliss,et al.  Radiation boundary conditions for wave-like equations , 1980 .

[20]  A. Snyder Coupled-Mode Theory for Optical Fibers , 1972 .

[21]  Trevor M. Benson Etched-wall bent-guide structure for integrated optics in the III-V semiconductors , 1984 .

[22]  N. Dagli,et al.  Analysis of rib dielectric waveguides , 1985, IEEE Journal of Quantum Electronics.

[23]  Robert Vichnevetsky,et al.  Energy and group velocity in semi discretizations of hyperbolic equations , 1981 .

[24]  G. Betts,et al.  Crossing-channel waveguide electrooptic modulators , 1986 .

[25]  David Yevick,et al.  Analysis of strongly guiding rib waveguide S-bends: theory and experiment , 1989 .

[26]  A. Yariv Coupled-mode theory for guided-wave optics , 1973 .

[27]  P. E. Lagasse,et al.  Finite Element Analysis Waveguides of Optical , 1981 .

[28]  B. Rahman,et al.  Finite-Element Analysis of Optical and Microwave Waveguide Problems , 1984 .

[29]  K. Kunz,et al.  Finite-Difference Analysis of EMP Coupling to Lossy Dielectric Structures , 1980, IEEE Transactions on Electromagnetic Compatibility.

[30]  Allan W. Snyder,et al.  Comments on 'Fundamental error of recent coupled mode formulations' (and reply) , 1988 .

[31]  Leon McCaughan,et al.  Novel physical effects in intersecting waveguides , 1987 .

[32]  Leon McCaughan,et al.  Radiation losses in intersecting optical waveguides , 1989 .

[33]  Bernard Prade,et al.  Three-dimensional beam-propagation-method treatment of a monomode optical-fiber half-coupler , 1987 .

[34]  Mikio Tsuji,et al.  Mode Propagation Through a Step Discontinuity in Dielectric Planar Waveguide , 1984 .

[35]  Hirochika Nakajima,et al.  Crosstalk Characteristics of Ti-LiNbO/sub 3/ Intersecting Waveguides and Their Application as TE/TM Mode Splitters , 1982 .

[36]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[37]  W. Chang,et al.  Extinction ratio degradation due to asymmetry in zero-gap directional coupling and crossing channel switches , 1987 .

[38]  H. Haus Waves and fields in optoelectronics , 1983 .

[39]  H A Haus,et al.  Coupled-mode formulations. , 1989, Optics letters.

[40]  Masanori Koshiba,et al.  Improved Finite-Element Formulation in Terms of the Magnetic Field Vector for Dielectric Waveguides , 1985 .

[41]  S. Miller Coupled wave theory and waveguide applications , 1954 .

[42]  J. R. Pierce,et al.  Coupling of Modes of Propagation , 1954 .

[43]  S. A. Schelkunoff,et al.  Conversion of Maxwell's equations into generalized Telegraphist's equations , 1955 .

[44]  M. Feit,et al.  Light propagation in graded-index optical fibers. , 1978, Applied optics.

[45]  H. Kogelnik,et al.  Theory of Dielectric Waveguides , 1975 .

[46]  D. Marcuse,et al.  Coupled mode theory of round optical fibers , 1973 .

[47]  Katsumi Morishita,et al.  Analysis of Discontinuities in Dielectric Waveguides by Means of the Least Squares Boundary Residual Method , 1979 .

[48]  Leon McCaughan,et al.  A multiple scattering interaction analysis of intersecting waveguides , 1987 .

[49]  T. E. Rozzi,et al.  Rigorous Analysis of the Step Discontinuity in a Planar Dielectric Waveguide , 1978 .

[50]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[51]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[52]  Allen Taflove,et al.  A Novel Method to Analyze Electromagnetic Scattering of Complex Objects , 1982, IEEE Transactions on Electromagnetic Compatibility.

[53]  A. Snyder Coupling of Modes on a Tapered Dielectric Cylinder , 1970 .

[54]  A. Neyer Electro-optic X-switch using single-mode Ti:LiNbO3 channel waveguides , 1983 .

[55]  P. Danielsen,et al.  Two-dimensional propagating beam analysis of an electrooptic waveguide modulator , 1984 .

[56]  A. Taflove,et al.  A new formulation of electromagnetic wave scattering using an on-surface radiation boundary condition approach , 1987 .

[57]  G. Stewart Optical Waveguide Theory , 1983, Handbook of Laser Technology and Applications.

[58]  C. Taylor,et al.  Electromagnetic pulse scattering in time-varying inhomogeneous media , 1969 .

[59]  L. Thylen,et al.  A beam propagation method analysis of active and passive waveguide crossings , 1985, Journal of Lightwave Technology.

[60]  N. Kumagai,et al.  Analysis of the guided modes in slab-coupled waveguides using a variational method , 1976 .

[61]  J. M. Arnold,et al.  Beam propagation method and geometrical optics , 1988 .

[62]  M. Austin Theoretical and experimental investigation of GaAs/GaAlAs and n/n + GaAs rib waveguides , 1984 .

[63]  Allan W. Snyder,et al.  Reply: Coupled mode theory neglects polarisation phenomena , 1988 .

[64]  Sujeet K. Chaudhuri,et al.  Combining modal analysis and the finite-difference time-domain method in the study of dielectric waveguide problems , 1990 .

[65]  D. Marcuse,et al.  The coupling of degenerate modes in two parallel dielectric waveguides , 1971 .

[66]  M. S. Stern Semivectorial polarised H˜ field solutions for dielectric waveguides with arbitrary index profiles , 1988 .

[67]  D. Marcuse Theory of dielectric optical waveguides , 1974 .

[68]  W. Streifer,et al.  Comment: Fundamental error of recent coupled mode formulations , 1988 .

[69]  H. Haus,et al.  Coupled-mode theory , 1991, Proc. IEEE.

[70]  Amos A. Hardy,et al.  Coupled-mode theory of parallel waveguides , 1985, Annual Meeting Optical Society of America.

[71]  Rajaram Bhat,et al.  Miniature integrated optical beam-splitter in AlGaAs/GaAs ridge waveguides , 1987 .

[72]  Partha P Banerjee,et al.  Principles of Nonlinear Optics , 1989 .

[73]  M. Feit,et al.  Calculation of dispersion in graded-index multimode fibers by a propagating-beam method. , 1979, Applied optics.

[74]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[75]  Paul Lagasse,et al.  Propagating-beam model for a single-mode-fibre fused coupler , 1987 .

[76]  Gene H. Golub,et al.  Matrix computations , 1983 .

[77]  Paul Lagasse,et al.  Loss calculation and design of arbitrarily curved integrated-optic waveguides , 1983 .

[78]  A. Taflove,et al.  Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations , 1975 .

[79]  M. Feit,et al.  Computation of mode properties in optical fiber waveguides by a propagating beam method. , 1980, Applied optics.

[80]  S. B. Dong,et al.  Single-mode optical waveguides. , 1979, Applied optics.

[81]  Sai T. Chu,et al.  A finite-difference time-domain method for the design and analysis of guided-wave optical structures , 1989 .

[82]  Paul Lagasse,et al.  Application of propagating beam methods to electromagnetic and acoustic wave propagation problems: A review , 1987 .

[83]  Shun Lien Chuang,et al.  A coupled mode formulation by reciprocity and a variational principle , 1987 .

[84]  J V Moloney,et al.  Beam-propagation method analysis of a nonlinear directional coupler. , 1986, Optics letters.

[85]  K. K. Mei,et al.  Calculations of the dispersive characteristics of microstrips by the time-domain finite difference method , 1988 .

[86]  H. Taylor,et al.  Dispersion characteristics of diffused channel waveguides , 1976 .

[87]  Richard Holland,et al.  Finite-Difference Analysis of EMP Coupling to Thin Struts and Wires , 1981, IEEE Transactions on Electromagnetic Compatibility.

[88]  Paul Lagasse,et al.  Bidirectional beam propagation method , 1988 .

[89]  Hermann A. Haus,et al.  Coupled-mode theory of optical waveguides , 1987 .

[90]  C. Rolland,et al.  Fresnel studies of reflected beams , 1990, IEEE Photonics Technology Letters.

[91]  Lars Thylén,et al.  Analysis of gratings by the beam-propagation method , 1982 .