Complexity problems in enumerative combinatorics

We give a broad survey of recent results in Enumerative Combinatorics and their complexity aspects.

[1]  Stephen Desalvo,et al.  Probabilistic divide-and-conquer: Deterministic second half , 2014, Adv. Appl. Math..

[2]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[3]  Igor Pak,et al.  Groups of oscillating intermediate growth , 2011, 1108.0262.

[4]  Igor Pak,et al.  The Expected Shape of Random Doubly Alternating Baxter Permutations , 2014 .

[5]  A. Sportiello,et al.  Arctic Curves of the Six-Vertex Model on Generic Domains: The Tangent Method , 2016, Journal of Statistical Physics.

[6]  Frank Harary,et al.  Graphical enumeration , 1973 .

[7]  A. Wigderson O ct 2 01 7 Interactions of Computational Complexity Theory and Mathematics , 2018 .

[8]  Oded Goldreich Computational Complexity , 2008 .

[9]  Igor Pak,et al.  Limit Shapes via Bijections , 2016, Combinatorics, Probability and Computing.

[10]  J. Ritt Partial differential algebra , 1950 .

[11]  Gábor Tardos,et al.  Excluded permutation matrices and the Stanley-Wilf conjecture , 2004, J. Comb. Theory, Ser. A.

[12]  Jacob Fox,et al.  Stanley-Wilf limits are typically exponential , 2013, ArXiv.

[13]  Christopher Hoffman,et al.  Pattern avoiding permutations and Brownian excursion , 2014 .

[14]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[15]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[16]  I. Pak Partition identities and geometric bijections , 2004 .

[17]  M. Bousquet-M'elou Rational and algebraic series in combinatorial enumeration , 2008, 0805.0588.

[18]  Thomas Wong,et al.  The cogrowth series for BS(N, N) is D-finite , 2013, Int. J. Algebra Comput..

[19]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[20]  Michael F. Singer,et al.  On the nature of the generating series of walks in the quarter plane , 2017 .

[21]  Fredrik Johansson,et al.  Efficient implementation of the Hardy-Ramanujan-Rademacher formula , 2012, 1205.5991.

[22]  de Ng Dick Bruijn,et al.  A note on plane trees , 1967 .

[23]  M. Bousquet-Mélou,et al.  Walks on the slit plane , 2000, math/0012230.

[24]  Julien Roques,et al.  Hypertranscendence of solutions of Mahler equations , 2015, Journal of the European Mathematical Society.

[25]  WERNER BALLMANN AUTOMORPHISM GROUPS , 2011 .

[26]  Karim A. Adiprasito,et al.  Hodge theory for combinatorial geometries , 2015, Annals of Mathematics.

[27]  Igor Pak,et al.  A combinatorial proof of the Rogers-Ramanujan and Schur identities , 2006, J. Comb. Theory, Ser. A.

[28]  Igor Pak,et al.  Groups of Intermediate Growth, an Introduction , 2008 .

[29]  Kenneth H. Rosen,et al.  Catalan Numbers , 2002 .

[30]  E. Rodney Canfield,et al.  Random Partitions with Non Negative rth Differences , 2002, LATIN.

[31]  David P. Robbins,et al.  Self-complementary totally symmetric plane partitions , 1986, J. Comb. Theory, Ser. A.

[32]  Leslie Ann Goldberg,et al.  Computation in permutation groups: counting and randomly sampling orbits , 2001 .

[33]  Julian West,et al.  Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..

[35]  Yuval Roichman,et al.  Standard Young Tableaux , 2015 .

[36]  William T. Tutte Graph theory as I have known it , 1998, Oxford lecture series in mathematics and its applications.

[37]  D. Aldous Triangulating the Circle, at Random , 1994 .

[38]  Igor Pak,et al.  The shape of random pattern-avoiding permutations , 2013, Adv. Appl. Math..

[39]  I. Niven,et al.  An introduction to the theory of numbers , 1961 .

[40]  A.M Garsia,et al.  A Rogers-Ramanujan Bijection , 1981, J. Comb. Theory, Ser. A.

[41]  Kathleen M. O'Hara,et al.  Unimodality of gaussian coefficients: A constructive proof , 1990, J. Comb. Theory, Ser. A.

[42]  W. Feit The degree formula for the skew-representations of the symmetric group , 1953 .

[43]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[44]  Emily Allen,et al.  A Weighted Interpretation for the Super Catalan Numbers , 2014, J. Integer Seq..

[45]  Christian Krattenthaler Another Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula , 1999, J. Comb. Theory, Ser. A.

[46]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[47]  Harry Furstenberg,et al.  Algebraic functions over finite fields , 1967 .

[48]  S. Akshay,et al.  Complexity of Restricted Variants of Skolem and Related Problems , 2017, MFCS.

[49]  Hugh Thomas,et al.  A uniform bijection between nonnesting and noncrossing partitions , 2011, 1101.1277.

[50]  Jonah Blasiak,et al.  Kronecker coefficients for one hook shape , 2012, 1209.2018.

[51]  W. Zudilin,et al.  A q-rious positivity , 2010, 1003.1999.

[52]  Mitio Nagumo Über die Differentialgleichung y"= ƒ(x, y, y') , 1937 .

[53]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[54]  Don Zagier,et al.  Elliptic modular forms and their applications. , 2008 .

[55]  Martin Klazar,et al.  Overview of some general results in combinatorial enumeration , 2008, 0803.4292.

[56]  Martin Klazar,et al.  Bell numbers, their relatives, and algebraic differential equations , 2003, J. Comb. Theory A.

[57]  G.,et al.  Sperner Properties for Groups and Relations , 2013 .

[58]  D. Zeilberger,et al.  Enumerative and algebraic combinatorics , 2010 .

[59]  Ronald L. Graham,et al.  Combinatorics: Ancient and Modern , 2013 .

[60]  K. Mahlburg Partition congruences and the Andrews-Garvan-Dyson crank , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Bauer,et al.  Triangulations , 1996, Discret. Math..

[62]  Igor Pak,et al.  Log-concavity of the partition function , 2013, 1310.7982.

[63]  J. Sylvester XXV. Proof of the hitherto undemonstrated fundamental theorem of invariants , 1878 .

[64]  S. Corteel,et al.  Partitions and Compositions Defined by Inequalities , 2003 .

[65]  Kathie Cameron,et al.  Thomason's algorithm for finding a second hamiltonian circuit through a given edge in a cubic graph is exponential on Krawczyk's graphs , 2001, Discret. Math..

[66]  David Harvey,et al.  A subquadratic algorithm for computing the n-th Bernoulli number , 2012, Math. Comput..

[67]  Andrew R. Conway,et al.  1324-avoiding Permutations Revisited , 2017, Adv. Appl. Math..

[68]  Philippe Flajolet,et al.  On the Non-Holonomic Character of Logarithms, Powers, and the nth Prime Function , 2005, Electron. J. Comb..

[70]  Herbert S. Wilf What is an Answer , 1982 .

[71]  Peter van Emde Boas,et al.  The Convenience of Tilings , 2019, complexity, logic, and recursion theory.

[72]  Einar Steingrímsson,et al.  Some open problems on permutation patterns , 2012, Surveys in Combinatorics.

[73]  Volker Kaibel,et al.  Counting lattice triangulations , 2002 .

[74]  D. Zeilberger,et al.  The Enumeration of Permutations with a Prescribed Number of “Forbidden” Patterns , 1996, math/9808080.

[75]  Stephen P. Humphries Cogrowth of groups and the Dedekind–Frobenius group determinant , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[76]  William Ellison,et al.  Prime numbers , 1985 .

[77]  Marc Noy,et al.  Further results on random cubic planar graphs , 2018, Random Struct. Algorithms.

[78]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[79]  Ira M. Gessel,et al.  Super Ballot Numbers , 1992, J. Symb. Comput..

[80]  George E. Andrews,et al.  Dyson's crank of a partition , 1988 .

[81]  I. Pak,et al.  THE NATURE OF PARTITION BIJECTIONS II. ASYMPTOTIC STABILITY , 2004 .

[82]  Jeffrey C. Lagarias,et al.  Computing n(X) the meissel-lehmer method , 1985 .

[83]  Steven R. Finch,et al.  Mathematical constants , 2005, Encyclopedia of mathematics and its applications.

[84]  Eugene M. Luks Isomorphism of Graphs of Bounded Valence Can Be Tested in Polynomial Time , 1980, FOCS.

[85]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[86]  Radko Mesiar,et al.  Partitions , 2019, The Student Mathematical Library.

[87]  Greta Panova,et al.  Unimodality via Kronecker products , 2013, 1304.5044.

[88]  Joël Ouaknine,et al.  Positivity Problems for Low-Order Linear Recurrence Sequences , 2013, SODA.

[89]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[90]  Igor Pak,et al.  Pattern avoidance is not P-recursive , 2015, ArXiv.

[91]  Eric Fusy Counting Unrooted Maps Using Tree- Decompositionéric Fusy , 2022 .

[92]  L. Babai Automorphism groups, isomorphism, reconstruction , 1996 .

[93]  László Babai,et al.  Graph isomorphism in quasipolynomial time [extended abstract] , 2015, STOC.

[94]  Igor Pak,et al.  Geometry and complexity of O'Hara's algorithm , 2007, Adv. Appl. Math..

[95]  Mark C. Wilson,et al.  Analytic Combinatorics in Several Variables , 2013 .

[96]  Christopher Hoffman,et al.  Pattern‐avoiding permutations and Brownian excursion part I: Shapes and fluctuations , 2014, Random Struct. Algorithms.

[97]  Dennis Stanton,et al.  CRANKS AND T -CORES , 1990 .

[98]  Miklós Bóna Exact Enumeration of 1342-Avoiding Permutations: A Close Link with Labeled Trees and Planar Maps , 1997, J. Comb. Theory, Ser. A.

[99]  Pawel Hitczenko,et al.  Random Partitions with Non-negative rth Differences , 2001, Adv. Appl. Math..

[100]  A. Okounkov Limit shapes, real and imagined , 2015 .

[101]  David Revelle,et al.  Heat Kernel Asymptotics on the Lamplighter Group , 2003 .

[102]  Igor Pak,et al.  Partition bijections, a survey , 2006 .

[103]  Lee A. Rubel,et al.  A Gap Theorem for Power Series Solutions of Algebraic Differential Equations , 1986 .

[104]  C. Krattenthaler,et al.  Plane partitions in the work of Richard Stanley and his school , 2015, 1503.05934.

[105]  Jed Yang Rectangular tileability and complementary tileability are undecidable , 2014, Eur. J. Comb..

[106]  Igor Pak,et al.  Reductions of Young Tableau Bijections , 2010, SIAM J. Discret. Math..

[107]  Greta Panova,et al.  On the complexity of computing Kronecker coefficients , 2014, computational complexity.

[108]  Christoph Neumann,et al.  A complexity theorem for the Novelli-Pak-Stoyanovskii algorithm , 2015, J. Comb. Theory, Ser. A.

[109]  Suresh Govindarajan Notes on higher-dimensional partitions , 2013, J. Comb. Theory, Ser. A.

[110]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[111]  Scott Garrabrant,et al.  Words in Linear Groups, Random Walks, Automata and P-Recursiveness , 2015, 1502.06565.

[112]  Carsten Schneider,et al.  Asymptotic and Exact Results on the Complexity of the Novelli-Pak-Stoyanovskii Algorithm , 2016, Electron. J. Comb..

[113]  J. Haglund Catalan Paths and q,t-enumeration , 2015 .

[114]  Marni Mishna,et al.  Walks with small steps in the quarter plane , 2008, 0810.4387.

[115]  Michael H. Albert,et al.  Generating permutations with restricted containers , 2018, J. Comb. Theory, Ser. A.

[116]  Dmitri Kouksov On rationality of the cogrowth series , 1998 .

[117]  Kilian Raschel,et al.  Counting quadrant walks via Tutte's invariant method , 2017, Combinatorial Theory.

[118]  D. Romik The Surprising Mathematics of Longest Increasing Subsequences , 2015 .

[119]  Oded Goldreich,et al.  Computational complexity: a conceptual perspective , 2008, SIGA.

[120]  Filippo Colomo,et al.  The Limit Shape of Large Alternating Sign Matrices , 2008, SIAM J. Discret. Math..

[121]  Jang Soo Kim,et al.  The Selberg integral and Young books , 2014, J. Comb. Theory, Ser. A.

[122]  Richard J. Lipton,et al.  Word Problems Solvable in Logspace , 1977, JACM.

[123]  W. T. Tutte On Hamiltonian Circuits , 1946 .

[124]  Mihyun Kang,et al.  Symmetries of Unlabelled Planar Triangulations , 2018, Electron. J. Comb..

[125]  Seunghyun Seo,et al.  Combinatorial proofs of inverse relations and log-concavity for Bessel numbers , 2008, Eur. J. Comb..

[126]  David Bruce Wilson,et al.  Generating random spanning trees more quickly than the cover time , 1996, STOC '96.

[127]  Ian P. Goulden,et al.  Labelled graphs with small vertex degrees and P-recursiveness , 1986 .

[128]  W. Woess Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .

[129]  A. Thomason Hamiltonian Cycles and Uniquely Edge Colourable Graphs , 1978 .

[130]  R. Kenyon An introduction to the dimer model , 2003, math/0310326.

[131]  Cogrowth series of free products of finite and free groups , 1999 .

[132]  Vincent Vatter,et al.  Permutation classes , 2014, 1409.5159.

[133]  Don Zagier,et al.  The 1-2-3 of Modular Forms , 2008 .

[134]  Guy Louchard,et al.  Boltzmann Samplers for the Random Generation of Combinatorial Structures , 2004, Combinatorics, Probability and Computing.

[135]  I. Gessel,et al.  A Combinatorial Interpretation of the Numbers 6 (2n)! =n! (n + 2)! , 2004 .

[136]  Xin Chen,et al.  THE SUPER CATALAN NUMBERS S(m,m+ s) FOR s ≤ 3 AND SOME INTEGER FACTORIAL RATIOS , 2012 .

[137]  T. F. Móri On random trees , 2002 .

[138]  C. Reutenauer,et al.  Noncommutative Rational Series with Applications , 2010 .

[139]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[140]  Adam Krawczyk,et al.  The Complexity of Finding a Second Hmiltonian Cycle in Cubic Graphs , 1999, J. Comput. Syst. Sci..

[141]  Charles F. Miller Decision Problems for Groups — Survey and Reflections , 1992 .

[142]  C. H,et al.  Handbook of enumerative combinatorics , 2022 .

[143]  Greta Panova,et al.  Hook formulas for skew shapes III. Multivariate and product formulas , 2017, Algebraic Combinatorics.

[145]  Sergey Kitaev,et al.  Patterns in Permutations and Words , 2011, Monographs in Theoretical Computer Science. An EATCS Series.

[146]  Mark D. Haiman,et al.  Non-commutative Rational Power Series and Algebraic Generating Functions , 1993, Eur. J. Comb..

[147]  A Topological Transformation Algorithm which Relates the Hamiltonian Circuits of a Cubic Planar Map , 1977 .

[148]  Neal Madras,et al.  Structure of random 312-avoiding permutations , 2016, Random Struct. Algorithms.

[149]  M. Drmota Random Trees: An Interplay between Combinatorics and Probability , 2009 .

[150]  Igor Pak,et al.  Counting Linear Extensions of Restricted Posets , 2018, Electron. J. Comb..

[151]  Caroline J. Klivans,et al.  On the connectivity of spaces of three-dimensional tilings , 2017, 1702.00798.

[152]  Olivier Bodini,et al.  Random Sampling of Plane Partitions , 2006, Combinatorics, Probability and Computing.

[153]  Robert A. Proctor,et al.  Solution of Two Difficult Combinatorial Problems with Linear Algebra , 1982 .

[154]  Rudini Menezes Sampaio,et al.  Limits of permutation sequences , 2011, J. Comb. Theory, Ser. B.

[155]  Christian Krattenthaler,et al.  Combinatorial Proof of the Log-Concavity of the Sequence of Matching Numbers , 1996, J. Comb. Theory, Ser. A.

[156]  Igor Pak,et al.  Tile invariants: new horizons , 2003, Theor. Comput. Sci..

[157]  X. Ren,et al.  Mathematics , 1935, Nature.

[158]  G. Panova Lozenge Tilings with Free Boundaries , 2014, 1408.0417.

[159]  Manuel Kauers,et al.  On 3-Dimensional Lattice Walks Confined to the Positive Octant , 2014, 1409.3669.

[160]  Harald Helfgott,et al.  Deterministic methods to find primes , 2011, Math. Comput..

[161]  Anthony J. Guttmann,et al.  Polygons, Polyominoes and Polycubes , 2009 .

[162]  CRAIG ALAN FEINSTEIN,et al.  P = NP , 2003 .

[163]  Michael Walter,et al.  On vanishing of Kronecker coefficients , 2015, computational complexity.

[164]  C. Pomerance,et al.  Prime Numbers: A Computational Perspective , 2002 .

[165]  Alin Bostan,et al.  Non-D-finite excursions in the quarter plane , 2012, J. Comb. Theory A.

[166]  Doron Zeilberger,et al.  Bijecting Euler's Partitions-Recurrence , 1985 .

[167]  Igor Pak,et al.  The Complexity of Generalized Domino Tilings , 2013, Electron. J. Comb..

[168]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[169]  Kevin James,et al.  Computing the integer partition function , 2007, Math. Comput..

[170]  Cristopher Moore,et al.  The Nature of Computation , 2011 .

[171]  P. Erdos,et al.  Asymmetric graphs , 1963 .