Silly rubber

Simulating viscoelastic polymers and polymeric fluids requires a robust and accurate capture of elasticity and viscosity. The computation is known to become very challenging under large deformations and high viscosity. Drawing inspirations from return mapping based elastoplasticity treatment for granular materials, we present a finite strain integration scheme for general viscoelastic solids under arbitrarily large deformation and non-equilibrated flow. Our scheme is based on a predictor-corrector exponential mapping scheme on the principal strains from the deformation gradient, which closely resembles the conventional treatment for elastoplasticity and allows straightforward implementation into any existing constitutive models. We develop a new Material Point Method that is fully implicit on both elasticity and inelasticity using augmented Lagrangian optimization with various preconditioning strategies for highly efficient time integration. Our method not only handles viscoelasticity but also supports existing elastoplastic models including Drucker-Prager and von-Mises in a unified manner. We demonstrate the efficacy of our framework on various examples showing intricate and characteristic inelastic dynamics with competitive performance.

[1]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[2]  Jernej Barbic,et al.  Finite Element Method Simulation of 3D Deformable Solids , 2015, Finite Element Method Simulation of 3D Deformable Solids.

[3]  Huamin Wang,et al.  Projective Peridynamics for Modeling Versatile Elastoplastic Materials , 2018, IEEE Transactions on Visualization and Computer Graphics.

[4]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[5]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[6]  Ronald Fedkiw,et al.  Codimensional non-Newtonian fluids , 2015, ACM Trans. Graph..

[7]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[8]  Adam W. Bargteil,et al.  A point-based method for animating elastoplastic solids , 2009, SCA '09.

[9]  M. Fortin,et al.  On decomposition - coordination methods using an augmented Lagrangian , 1983 .

[10]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[11]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[12]  Chenfanfu Jiang,et al.  A material point method for viscoelastic fluids, foams and sponges , 2015, Symposium on Computer Animation.

[13]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[14]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[15]  Matthias Müller,et al.  Real-time simulation of large elasto-plastic deformation with shape matching , 2016, Symposium on Computer Animation.

[16]  Tomoyuki Nishita,et al.  Fast simulation of viscous fluids with elasticity and thermal conductivity using position-based dynamics , 2014, Comput. Graph..

[17]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[18]  Chenfanfu Jiang,et al.  Multi-species simulation of porous sand and water mixtures , 2017, ACM Trans. Graph..

[19]  Jing Li,et al.  FEPR: fast energy projection for real-time simulation of deformable objects , 2018, ACM Trans. Graph..

[20]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[21]  Markus H. Gross,et al.  Deforming meshes that split and merge , 2009, ACM Trans. Graph..

[22]  Jing Li,et al.  Laplacian Damping for Projective Dynamics , 2018, VRIPHYS.

[23]  Ming C. Lin,et al.  Implicit Formulation for SPH‐based Viscous Fluids , 2015, Comput. Graph. Forum.

[24]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[25]  Ming C. Lin,et al.  Free-flowing granular materials with two-way solid coupling , 2010, ACM Trans. Graph..

[26]  Patrick Le Tallec,et al.  Numerical analysis of viscoelastic problems , 1990 .

[27]  Ladislav Kavan,et al.  Stabilizing Integrators for Real-Time Physics , 2018, ACM Trans. Graph..

[28]  Ken Museth,et al.  Animation of crack propagation by means of an extended multi-body solver for the material point method , 2017, Comput. Graph..

[29]  Eitan Grinspun,et al.  Discrete viscous sheets , 2012, ACM Trans. Graph..

[30]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[31]  Hans Johnston,et al.  Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term , 2004 .

[32]  Alexander M. Puzrin,et al.  Principles of Hyperplasticity: An Approach to Plasticity Theory Based on Thermodynamic Principles , 2010 .

[33]  Greg Turk,et al.  Fast viscoelastic behavior with thin features , 2008, ACM Trans. Graph..

[34]  Andre Pradhana,et al.  GPU optimization of material point methods , 2018, ACM Trans. Graph..

[35]  Stephen P. Boyd,et al.  OSQP: an operator splitting solver for quadratic programs , 2017, 2018 UKACC 12th International Conference on Control (CONTROL).

[36]  X. Yan,et al.  MPM simulation of interacting fluids and solids , 2018, Comput. Graph. Forum.

[37]  Jessica K. Hodgins,et al.  A finite element method for animating large viscoplastic flow , 2007, ACM Trans. Graph..

[38]  Christopher Batty,et al.  A simple finite volume method for adaptive viscous liquids , 2011, SCA '11.

[39]  Xuchen Han,et al.  A material point method for thin shells with frictional contact , 2018, ACM Trans. Graph..

[40]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[41]  S. Reese,et al.  A theory of finite viscoelasticity and numerical aspects , 1998 .

[42]  James F. O'Brien,et al.  Fast simulation of mass-spring systems , 2013, ACM Trans. Graph..

[43]  Alexander Mielke,et al.  A Mathematical Framework for Generalized Standard Materials in the Rate-Independent Case , 2006 .

[44]  Homer F. Walker,et al.  Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..

[45]  Duc Quang Nguyen,et al.  Directable photorealistic liquids , 2004, SCA '04.

[46]  Bailin Deng,et al.  Anderson acceleration for geometry optimization and physics simulation , 2018, ACM Trans. Graph..

[47]  Yin Yang,et al.  Descent methods for elastic body simulation on the GPU , 2016, ACM Trans. Graph..

[48]  Robert Bridson,et al.  Accurate viscous free surfaces for buckling, coiling, and rotating liquids , 2008, SCA '08.

[49]  M. Fortin,et al.  A new approach for the FEM simulation of viscoelastic flows , 1989 .

[50]  Greg Turk,et al.  Melting and flowing , 2002, SCA '02.

[51]  Andre Pradhana,et al.  A moving least squares material point method with displacement discontinuity and two-way rigid body coupling , 2018, ACM Trans. Graph..

[52]  J. Teran,et al.  Dynamic anticrack propagation in snow , 2018, Nature Communications.

[53]  David R. Hill,et al.  OpenVDB: an open-source data structure and toolkit for high-resolution volumes , 2013, SIGGRAPH '13.

[54]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[55]  Jie Li,et al.  ADMM ⊇ Projective Dynamics: Fast Simulation of Hyperelastic Models with Dynamic Constraints , 2017, IEEE Trans. Vis. Comput. Graph..

[56]  Shi-Min Hu,et al.  A Temporally Adaptive Material Point Method with Regional Time Stepping , 2018, Comput. Graph. Forum.

[57]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[58]  Eftychios Sifakis,et al.  An adaptive generalized interpolation material point method for simulating elastoplastic materials , 2017, ACM Trans. Graph..

[59]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[60]  Boumediene Nedjar,et al.  Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. Part II: Computational aspects , 2002 .

[61]  Robert Bridson,et al.  Variational stokes , 2017, ACM Trans. Graph..

[62]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[63]  Boumediene Nedjar,et al.  Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. Part I: Continuum formulations , 2002 .

[64]  Rahul Narain,et al.  Accurate dissipative forces in optimization integrators , 2018, ACM Trans. Graph..

[65]  Jonathan Eckstein Parallel alternating direction multiplier decomposition of convex programs , 1994 .

[66]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[67]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, ACM Trans. Graph..

[68]  Miguel A. Otaduy,et al.  Conformation constraints for efficient viscoelastic fluid simulation , 2017, ACM Trans. Graph..

[69]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[70]  Ming Gao,et al.  Animating fluid sediment mixture in particle-laden flows , 2018, ACM Trans. Graph..

[71]  Florence Bertails-Descoubes,et al.  A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..

[72]  Stefanie Reese,et al.  A Presentation and Comparison of Two Large Deformation Viscoelasticity Models , 1997 .

[73]  Eitan Grinspun,et al.  A multi-scale model for simulating liquid-fabric interactions , 2018, ACM Trans. Graph..

[74]  Ben Jones,et al.  Deformation embedding for point-based elastoplastic simulation , 2014, TOGS.

[75]  Eitan Grinspun,et al.  Continuum Foam , 2015, ACM Trans. Graph..

[76]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[77]  James F. O'Brien,et al.  A method for animating viscoelastic fluids , 2004, ACM Trans. Graph..

[78]  Brendt Wohlberg,et al.  ADMM Penalty Parameter Selection by Residual Balancing , 2017, ArXiv.

[79]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[80]  Ronald Fedkiw,et al.  Multiple interacting liquids , 2006, ACM Trans. Graph..