Gaps‐fill of SLC‐off Landsat ETM+ satellite image using a geostatistical approach

Using appropriate techniques to fill the data gaps in SLC‐off ETM+ imagery may enable more scientific use of the data. The local linear histogram‐matching technique chosen by USGS has limitations if the scenes being combined exhibit high temporal variability and radical differences in target radiance due, for example, to the presence of clouds. This study proposes using an alternative interpolation method, the kriging geostatistical technique, for filling the data gaps. The case study shows that the ordinary kriging techniques may provide a powerful tool for interpolating the missing pixels in the SLC‐off ETM+ imagery. While the standardized ordinary cokriging has been shown to be particularly useful when samples of the variable to be predicted are sparse and samples of a second, related variable are plentiful, the case study demonstrates that it provides little improvement in interpolating the data gap in the SLC‐off imagery.

[1]  Peter M. Atkinson,et al.  Geostatistics and remote sensing , 1998 .

[2]  A. Stein,et al.  A comparison of conventional and geostatistical methods to replace clouded pixels in NOAA-AVHRR images , 1998 .

[3]  C. Woodcock,et al.  Autocorrelation and regularization in digital images. II. Simple image models , 1989 .

[4]  Jennifer L. Dungan,et al.  Kriging in the shadows: Geostatistical interpolation for remote sensing , 1994 .

[5]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[6]  R. Lark Geostatistical description of texture on an aerial photograph for discriminating classes of land cover , 1996 .

[7]  Paul J. Curran,et al.  Remote sensing: Using the spatial domain , 2001, Environmental and Ecological Statistics.

[8]  Hiroshi Akima,et al.  A Method of Bivariate Interpolation and Smooth Surface Fitting for Irregularly Distributed Data Points , 1978, TOMS.

[9]  G. Matheron Les variables régionalisées et leur estimation : une application de la théorie de fonctions aléatoires aux sciences de la nature , 1965 .

[10]  C. Woodcock,et al.  Autocorrelation and regularization in digital images. I. Basic theory , 1988 .

[11]  J. Parker,et al.  Estimating oil spill characteristics from oil heads in scattered monitoring wells , 1993, Environmental monitoring and assessment.

[12]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[13]  Ute Christina Herzfeld,et al.  Geostatistical interpolation and classification of remote sensing data from ice surfaces , 1999 .

[14]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[15]  S. Bruin Predicting the areal extent of land-cover types using classified imagery and geostatistics. , 2000 .

[16]  G. Matheron Principles of geostatistics , 1963 .

[17]  G. Matheron The intrinsic random functions and their applications , 1973, Advances in Applied Probability.

[18]  Michael J. Day,et al.  TOWARDS ESTABLISHING EFFECTIVE PROTECTIVE BOUNDARIES FOR THE LUNAN STONE FOREST USING AN ONLINE SPATIAL DECISION SUPPORT SYSTEM KAKO PRITI DO UČINKOVITIH MEJA ZA VAROVANJE LUNANSKEGA KAMNITEGA GOZDA S POMOČJO »ONLINE SPATIAL DECISION SUPPORT SYSTEM« , 2016 .