A front-tracking shock-capturing method for two fluids

We present a new high-order front-tracking method for hyperbolic systems of conservation laws for two gases separated by a tracked contact discontinuity, using a combination of a high-order Godunov algorithm and level set methods. Our approach discretizes the moving front and gas domains on a Cartesian grid, with control volumes determined by the intersection of the grid with the front. In cut cells, a combination of conservative and non-conservative finite volume quadratures provide small-cell stability. Global conservation is maintained using redistribution. We demonstrate second-order convergence in smooth flow and firstorder convergence in the presence of shocks.

[1]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[3]  Bradford Sturtevant,et al.  Experiments on the Richtmyer-Meshkov instability of an air/SF6 interface , 1995 .

[4]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[5]  Chunming Li,et al.  Distance Regularized Level Set Evolution and Its Application to Image Segmentation , 2010, IEEE Transactions on Image Processing.

[6]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[7]  Frédéric Gibou,et al.  Second-Order Accurate Computation of Curvatures in a Level Set Framework Using Novel High-Order Reinitialization Schemes , 2008, J. Sci. Comput..

[8]  P. Colella,et al.  Embedded boundary grid generation using the divergence theorem, implicit functions, and constructive solid geometry , 2008 .

[9]  Marilyn Schneider,et al.  Richtmyer–Meshkov instability growth: experiment, simulation and theory , 1999, Journal of Fluid Mechanics.

[10]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[11]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[12]  M. Brouillette THE RICHTMYER-MESHKOV INSTABILITY , 2002 .

[13]  R. Menikoff,et al.  The Riemann problem for fluid flow of real materials , 1989 .

[14]  Mark S. Anderson,et al.  Experimental validation of a Richtmyer–Meshkov scaling law over large density ratio and shock strength ranges , 2009 .

[15]  M. A. Jones,et al.  A membraneless experiment for the study of Richtmyer–Meshkov instability of a shock-accelerated gas interface , 1997 .

[16]  James Glimm,et al.  Front tracking for hyperbolic systems , 1981 .

[17]  J. Haas,et al.  Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities , 1987, Journal of Fluid Mechanics.

[18]  Vladimir Sabelnikov,et al.  Modified level set equation and its numerical assessment , 2014, J. Comput. Phys..

[19]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[20]  Hiroshi Terashima,et al.  A front-tracking/ghost-fluid method for fluid interfaces in compressible flows , 2009, J. Comput. Phys..

[21]  Zhiliang Xu,et al.  Conservative Front Tracking with Improved Accuracy , 2003, SIAM J. Numer. Anal..

[22]  Phillip Colella,et al.  A Second-Order Accurate Conservative Front-Tracking Method in One Dimension , 2010, SIAM J. Sci. Comput..

[23]  Guillermo Sapiro,et al.  O(N) implementation of the fast marching algorithm , 2006, Journal of Computational Physics.

[24]  Benjamin Seibold,et al.  A gradient-augmented level set method with an optimally local, coherent advection scheme , 2009, J. Comput. Phys..

[25]  Marsha Berger,et al.  Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws , 1994, SIAM J. Sci. Comput..

[26]  Phillip Colella,et al.  A Cartesian grid embedded boundary method for hyperbolic conservation laws , 2006 .

[27]  Greg Miller Numerical Analysis for Engineers and Scientists: Preface , 2014 .

[28]  Ning Zhao,et al.  Conservative front tracking and level set algorithms , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Oleg Schilling,et al.  High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: Comparison to experimental data and to amplitude growth model predictions , 2006 .

[30]  J. Jacobs,et al.  PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF6 interface , 2002, Journal of Fluid Mechanics.

[31]  J. P. Boris,et al.  Vorticity generation by shock propagation through bubbles in a gas , 1988, Journal of Fluid Mechanics.

[32]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[33]  Randall J. LeVeque,et al.  H-Box Methods for the Approximation of Hyperbolic Conservation Laws on Irregular Grids , 2003, SIAM J. Numer. Anal..

[34]  G. Miller,et al.  AN EMBEDDED BOUNDARY METHOD FOR THE NAVIER-STOKES EQUATIONS ON A TIME-DEPENDENT DOMAIN , 2012 .

[35]  Rémi Abgrall,et al.  A Simple Method for Compressible Multifluid Flows , 1999, SIAM J. Sci. Comput..

[36]  E. Puckett,et al.  A High-Order Godunov Method for Multiple Condensed Phases , 1996 .

[37]  P. Colella,et al.  A conservative three-dimensional Eulerian method for coupled solid-fluid shock capturing , 2002 .

[38]  John B. Bell,et al.  Cartesian grid method for unsteady compressible flow in irregular regions , 1995 .

[39]  James A. Sethian,et al.  The Fast Construction of Extension Velocities in Level Set Methods , 1999 .

[40]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[41]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[42]  James J. Quirk,et al.  On the dynamics of a shock–bubble interaction , 1994, Journal of Fluid Mechanics.

[43]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[44]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[45]  Meng-Sing Liou,et al.  Numerical prediction of interfacial instabilities: Sharp interface method (SIM) , 2008, J. Comput. Phys..

[46]  Frédéric Gibou,et al.  A local level-set method using a hash table data structure , 2012, J. Comput. Phys..

[47]  K. Mikaelian NUMERICAL SIMULATIONS OF RICHTMYER-MESHKOV INSTABILITIES IN FINITE-THICKNESS FLUID LAYERS , 1996 .

[48]  Lingling Wu,et al.  A simple package for front tracking , 2006, J. Comput. Phys..

[49]  A. Harten High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .

[50]  James M. Hyman,et al.  Numerical methods for tracking interfaces , 1984 .

[51]  Phillip Colella,et al.  Conservative front-tracking for inviscid compressible flow , 1991 .

[52]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[53]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .