Periodically disturbing biofilms reduces expression of quorum sensing-regulated virulence factors in Pseudomonas aeruginosa

[1]  L. Rahme,et al.  Interconnections of Pseudomonas aeruginosa Quorum-Sensing Systems in Intestinal Permeability and Inflammation , 2023, mBio.

[2]  A. Lopatkin,et al.  Disturbing the Spatial Organization of Biofilm Communities Affects Expression of agr-Regulated Virulence Factors in Staphylococcus aureus , 2023, Applied and environmental microbiology.

[3]  M. Arabestani,et al.  Molecular epidemiology and collaboration of siderophore-based iron acquisition with surface adhesion in hypervirulent Pseudomonas aeruginosa isolates from wound infections , 2022, Scientific Reports.

[4]  Meng-Ting She,et al.  Novel quinoline‐based derivatives as the PqsR inhibitor against Pseudomonas aeruginosa PAO1 , 2022, Journal of applied microbiology.

[5]  A. McBride,et al.  The role of shear dynamics in biofilm formation , 2022, NPJ biofilms and microbiomes.

[6]  L. Rahme,et al.  Tackling recalcitrant Pseudomonas aeruginosa infections in critical illness via anti-virulence monotherapy , 2022, Nature Communications.

[7]  D. Hogan,et al.  Metabolic basis for the evolution of a common pathogenic Pseudomonas aeruginosa variant , 2022, bioRxiv.

[8]  T. Craddock,et al.  Periodically Disturbing the Spatial Structure of Biofilms Can Affect the Production of an Essential Virulence Factor in Pseudomonas aeruginosa , 2021, mSystems.

[9]  A. T. Vincent,et al.  Pseudomonas aeruginosa isolates defective in function of the LasR quorum sensing regulator are frequent in diverse environmental niches , 2021, bioRxiv.

[10]  R. Hartmann,et al.  A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate Pseudomonas aeruginosa Biofilms , 2021, Advanced science.

[11]  I. López-Montero,et al.  Self-Adaptation of Pseudomonas fluorescens Biofilms to Hydrodynamic Stress , 2021, Frontiers in Microbiology.

[12]  Zemer Gitai,et al.  Pseudomonas aeruginosa detachment from surfaces via a self-made small molecule , 2020, bioRxiv.

[13]  S. Chua,et al.  Vanillin inhibits PqsR-mediated virulence in Pseudomonas aeruginosa. , 2020, Food & function.

[14]  Martha E. Grady,et al.  Biofilm rupture by laser-induced stress waves increases with loading amplitude, independent of location , 2019, bioRxiv.

[15]  Shaomin Yan,et al.  Can Biofilm Be Reversed Through Quorum Sensing in Pseudomonas aeruginosa? , 2019, Front. Microbiol..

[16]  P. Kukura,et al.  Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements , 2019, Nature Microbiology.

[17]  P. Kukura,et al.  Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements , 2019, Nature Microbiology.

[18]  Erin S. Gloag,et al.  Viscoelastic properties of Pseudomonas aeruginosa variant biofilms , 2018, Scientific Reports.

[19]  K. Stevenson,et al.  Spatial determinants of quorum signaling in a Pseudomonas aeruginosa infection model , 2018, Proceedings of the National Academy of Sciences.

[20]  James Q. Boedicker,et al.  Quantifying the strength of quorum sensing crosstalk within microbial communities , 2017, PLoS Comput. Biol..

[21]  Paul Stoodley,et al.  Targeting microbial biofilms: current and prospective therapeutic strategies , 2017, Nature Reviews Microbiology.

[22]  J. Goldberg,et al.  The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer , 2017, PLoS pathogens.

[23]  Y. Arafat,et al.  Molecular Mechanism of Quorum-Sensing in Enterococcus faecalis: Its Role in Virulence and Therapeutic Approaches , 2017, International journal of molecular sciences.

[24]  T. Craddock,et al.  Cooperation and competition shape ecological resistance during periodic spatial disturbance of engineered bacteria , 2017, Scientific Reports.

[25]  M. Elias,et al.  Effect of Quorum Quenching Lactonase in Clinical Isolates of Pseudomonas aeruginosa and Comparison with Quorum Sensing Inhibitors , 2017, Front. Microbiol..

[26]  M. Otto,et al.  Quorum-sensing regulation in staphylococci—an overview , 2015, Front. Microbiol..

[27]  Joel P. Zysman,et al.  Achieving Remission in Gulf War Illness: A Simulation-Based Approach to Treatment Design , 2015, PloS one.

[28]  H. Stone,et al.  Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa , 2015, Proceedings of the National Academy of Sciences.

[29]  Knut Drescher,et al.  Extracellular matrix structure governs invasion resistance in bacterial biofilms , 2015, The ISME Journal.

[30]  S. Ismail,et al.  Inhibition of Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa by Culture Extract from Novel Bacterial Species of Paenibacillus Using a Rat Model of Chronic Lung Infection , 2015, International journal of bacteriology.

[31]  Jason B Shear,et al.  Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy , 2014, Proceedings of the National Academy of Sciences.

[32]  T. Tolker-Nielsen Pseudomonas aeruginosa biofilm infections: From molecular biofilm biology to new treatment possibilities , 2014, APMIS. Supplementum.

[33]  Jasmine Lee,et al.  The hierarchy quorum sensing network in Pseudomonas aeruginosa , 2014, Protein & Cell.

[34]  K. Lewis,et al.  Pseudomonas aeruginosa Biofilms in Disease , 2014, Microbial Ecology.

[35]  Cristina Solano,et al.  Biofilm dispersion and quorum sensing. , 2014, Current opinion in microbiology.

[36]  Gordon Broderick,et al.  A Role for Homeostatic Drive in the Perpetuation of Complex Chronic Illness: Gulf War Illness and Chronic Fatigue Syndrome , 2014, PloS one.

[37]  Knut Drescher,et al.  A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation , 2013, Proceedings of the National Academy of Sciences.

[38]  H. Berg,et al.  Dynamics of mechanosensing in the bacterial flagellar motor , 2013, Proceedings of the National Academy of Sciences.

[39]  P. Williams,et al.  A cell-cell communication signal integrates quorum sensing and stress response. , 2013, Nature chemical biology.

[40]  Chang-Soo Lee,et al.  Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel , 2011 .

[41]  Nancy D. Hanson,et al.  Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms , 2009, Clinical Microbiology Reviews.

[42]  M. Cámara,et al.  Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. , 2009, Current opinion in microbiology.

[43]  Thomas D. Schmittgen,et al.  Analyzing real-time PCR data by the comparative CT method , 2008, Nature Protocols.

[44]  Olga Yakovenko,et al.  FimH Forms Catch Bonds That Are Enhanced by Mechanical Force Due to Allosteric Regulation* , 2008, Journal of Biological Chemistry.

[45]  R. Bonomo,et al.  Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[46]  J. Hupp,et al.  Mucin–Pseudomonas aeruginosa interactions promote biofilm formation and antibiotic resistance , 2006, Molecular microbiology.

[47]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[48]  R. Tompkins,et al.  Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  A. Jesaitis,et al.  Compromised Host Defense on Pseudomonas aeruginosa Biofilms: Characterization of Neutrophil and Biofilm Interactions 1 , 2003, The Journal of Immunology.

[50]  S. Kjelleberg,et al.  Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors , 2003, The EMBO journal.

[51]  Marina S. Kuznetsova,et al.  Functions Required for Extracellular Quinolone Signaling by Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[52]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[53]  M. Kosorok,et al.  Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition , 2001, Pediatric pulmonology.

[54]  Dong-Soo Kim,et al.  Propagation and Attenuation Characteristics of Various Ground Vibrations , 2000 .

[55]  W. Fuqua,et al.  Evidence of autoinducer activity in naturally occurring biofilms. , 1997, FEMS microbiology letters.

[56]  R Thomas,et al.  Dynamical behaviour of biological regulatory networks--I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. , 1995, Bulletin of mathematical biology.

[57]  René Thomas Regulatory networks seen as asynchronous automata: A logical description , 1991 .

[58]  I R Titze,et al.  On the mechanics of vocal-fold vibration. , 1976, The Journal of the Acoustical Society of America.

[59]  B. Glick,et al.  Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. , 2019, Biotechnology advances.

[60]  Samuel I. Miller,et al.  Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. , 2009, Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society.

[61]  Ioannis Xenarios,et al.  A method for the generation of standardized qualitative dynamical systems of regulatory networks , 2005, Theoretical Biology and Medical Modelling.

[62]  S. E. West,et al.  Vfr controls quorum sensing in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[63]  E. King,et al.  Two simple media for the demonstration of pyocyanin and fluorescin. , 1954, The Journal of laboratory and clinical medicine.