A numerical simulation of a complex turbulent shear flow using large-eddy simulation techniques is carried out. The filtered Navier-Stokes equations are solved with a finite-volume method. The subgrid model is a local adaptation to the physical space of isotropic spectral eddy-viscosity models. The statistics of the mean field are in good agreement with the experimental data available, corresponding to low step. Calculations in a high-step case show that the eddy structure of the flow presents striking analogies with the plane shear layers, with large billows shed behind the step, and longitudinal hairpin vortices strained between these billows.