Non-Abelian gauge potentials for ultracold atoms with degenerate dark states.

We show that the adiabatic motion of ultracold, multilevel atoms in spatially varying laser fields can give rise to effective non-Abelian gauge fields if degenerate adiabatic eigenstates of the atom-laser interaction exist. A pair of such degenerate dark states emerges, e.g., if laser fields couple three internal states of an atom to a fourth common one under pairwise two-photon-resonance conditions. For this so-called tripod scheme we derive general conditions for truly non-Abelian gauge potentials and discuss special examples. In particular we show that using orthogonal laser beams with orbital angular momentum an effective magnetic field can be generated that has a monopole component.

[1]  Yannick Seurin,et al.  Fast rotation of a Bose-Einstein condensate. , 2004, Physical review letters.

[2]  Effective magnetic fields in degenerate atomic gases induced by light beams with orbital angular momenta , 2004, cond-mat/0412015.

[3]  F. Wilczek,et al.  Geometric Phases in Physics , 1989 .

[4]  Continuous-variable quantum nondemolishing interaction at a distance , 2004, quant-ph/0404010.

[5]  R. Graham,et al.  Interference of atomic levels and superfluid-Mott insulator phase transitions in a two-component Bose-Einstein condensate. , 2003, Physical review letters.

[6]  P. Zoller,et al.  Spin monopoles with Bose-Einstein condensates , 2000 .

[7]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  G. Juzeliūnas,et al.  Slow light in degenerate fermi gases. , 2004, Physical review letters.

[9]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[10]  J I Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[11]  M. Lukin,et al.  Fractional quantum Hall states of atoms in optical lattices. , 2004, Physical Review Letters.

[12]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[13]  D S Petrov,et al.  Critical rotation of a harmonically trapped Bose gas. , 2002, Physical review letters.

[14]  M. Olshanii,et al.  Gauge structures in atom-laser interaction: Bloch oscillations in a dark lattice. , 1996, Physical review letters.

[15]  Klaas Bergmann,et al.  LASER-DRIVEN POPULATION TRANSFER IN FOUR-LEVEL ATOMS : CONSEQUENCES OF NON-ABELIAN GEOMETRICAL ADIABATIC PHASE FACTORS , 1999 .

[16]  E. Arimondo Coherent Population Trapping in Laser Spectroscopy , 1996 .

[17]  P Zoller,et al.  Cold atoms in non-Abelian gauge potentials: from the Hofstadter "moth" to lattice gauge theory. , 2005, Physical review letters.

[18]  Moody,et al.  Realizations of magnetic-monopole gauge fields: Diatoms and spin precession. , 1986, Physical review letters.

[19]  I Coddington,et al.  Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level. , 2003, Physical review letters.

[20]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[21]  R. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations , 1983 .

[22]  P. Zoller,et al.  Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms , 2003, quant-ph/0304038.

[23]  E. Mueller Artificial electromagnetism for neutral atoms: Escher staircase and Laughlin liquids , 2004, cond-mat/0404306.

[24]  G. Nienhuis,et al.  Geometric potentials for subrecoil dynamics , 1998 .

[25]  B. Shore,et al.  Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states , 1998 .

[26]  Henk Stoof,et al.  Skyrmions in a ferromagnetic Bose–Einstein condensate , 2001, Nature.

[27]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[28]  N. Regnault,et al.  Quantum Hall fractions in rotating Bose-Einstein condensates. , 2002, Physical review letters.

[30]  D. Hofstadter Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields , 1976 .