Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance.

Quinolone antimicrobials are widely used in clinical medicine and are the only current class of agents that directly inhibit bacterial DNA synthesis. Quinolones dually target DNA gyrase and topoisomerase IV binding to specific domains and conformations so as to block DNA strand passage catalysis and stabilize DNA-enzyme complexes that block the DNA replication apparatus and generate double breaks in DNA that underlie their bactericidal activity. Resistance has emerged with clinical use of these agents and is common in some bacterial pathogens. Mechanisms of resistance include mutational alterations in drug target affinity and efflux pump expression and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes are commonly in a localized domain of the GyrA and ParC subunits of gyrase and topoisomerase IV, respectively, and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include other antimicrobials as well as quinolones. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is because of Qnr proteins that protect the target enzymes from quinolone action, a mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones.

[1]  G. Jacoby,et al.  Mutations That Enhance the Ciprofloxacin Resistance of Escherichia coli with qnrA1 , 2015, Antimicrobial Agents and Chemotherapy.

[2]  P. Ho,et al.  Plasmid-Mediated OqxAB Is an Important Mechanism for Nitrofurantoin Resistance in Escherichia coli , 2015, Antimicrobial Agents and Chemotherapy.

[3]  G. Jacoby,et al.  Protective Effect of Qnr on Agents Other than Quinolones That Target DNA Gyrase , 2015, Antimicrobial Agents and Chemotherapy.

[4]  V. Dubois,et al.  Description of an original integron encompassing blaVIM-2, qnrVC1 and genes encoding bacterial group II intron proteins in Pseudomonas aeruginosa. , 2015, The Journal of antimicrobial chemotherapy.

[5]  L. Peixe,et al.  Phylogeny and Comparative Genomics Unveil Independent Diversification Trajectories of qnrB and Genetic Platforms within Particular Citrobacter Species , 2015, Antimicrobial Agents and Chemotherapy.

[6]  G. Jacoby,et al.  Interactions between QnrB, QnrB Mutants, and DNA Gyrase , 2015, Antimicrobial Agents and Chemotherapy.

[7]  E. Snesrud,et al.  Contribution of Resistance-Nodulation-Cell Division Efflux Systems to Antibiotic Resistance and Biofilm Formation in Acinetobacter baumannii , 2015, mBio.

[8]  M. H. Wong,et al.  Evolution and Dissemination of OqxAB-Like Efflux Pumps, an Emerging Quinolone Resistance Determinant among Members of Enterobacteriaceae , 2015, Antimicrobial Agents and Chemotherapy.

[9]  Hiroshi Nikaido,et al.  The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria , 2015, Clinical Microbiology Reviews.

[10]  P. Ruggerone,et al.  AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity , 2015, Proceedings of the National Academy of Sciences.

[11]  D. Centrón,et al.  Characterization of Tn6238 with a New Allele of aac(6′)-Ib-cr , 2015, Antimicrobial Agents and Chemotherapy.

[12]  Yonghong Xiao,et al.  Molecular Epidemiology and Genetic Diversity of Fluoroquinolone-Resistant Escherichia coli Isolates from Patients with Community-Onset Infections in 30 Chinese County Hospitals , 2014, Journal of Clinical Microbiology.

[13]  D. Hooper,et al.  Clinical Importance and Epidemiology of Quinolone Resistance , 2014, Infection & chemotherapy.

[14]  G. Kaatz,et al.  Analyses of Multidrug Efflux Pump-Like Proteins Encoded on the Staphylococcus aureus Chromosome , 2014, Antimicrobial Agents and Chemotherapy.

[15]  P. Courvalin,et al.  Overexpression of the Novel MATE Fluoroquinolone Efflux Pump FepA in Listeria monocytogenes Is Driven by Inactivation of Its Local Repressor FepR , 2014, PloS one.

[16]  P. Loewen,et al.  Triclosan Can Select for an AdeIJK-Overexpressing Mutant of Acinetobacter baumannii ATCC 17978 That Displays Reduced Susceptibility to Multiple Antibiotics , 2014, Antimicrobial Agents and Chemotherapy.

[17]  G. Jacoby,et al.  QnrS1 structure-activity relationships. , 2014, The Journal of antimicrobial chemotherapy.

[18]  D. Lawson,et al.  A New Crystal Structure of the Bifunctional Antibiotic Simocyclinone D8 Bound to DNA Gyrase Gives Fresh Insight into the Mechanism of Inhibition , 2014, Journal of molecular biology.

[19]  Wah Chiu,et al.  Structure of the AcrAB-TolC multidrug efflux pump , 2014, Nature.

[20]  N. Osheroff,et al.  Mechanism of Quinolone Action and Resistance , 2014, Biochemistry.

[21]  B. Berçot,et al.  Mobile Insertion Cassette Elements Found in Small Non-Transmissible Plasmids in Proteeae May Explain qnrD Mobilization , 2014, PloS one.

[22]  V. Nagaraja,et al.  Molecular Basis for the Differential Quinolone Susceptibility of Mycobacterial DNA Gyrase , 2014, Antimicrobial Agents and Chemotherapy.

[23]  G. Jacoby,et al.  Plasmid-Mediated Quinolone Resistance , 2008, Microbiology spectrum.

[24]  G. Jacoby,et al.  Risk factors and clinical characteristics of patients with qnr-positive Klebsiella pneumoniae bacteraemia. , 2013, The Journal of antimicrobial chemotherapy.

[25]  A. Vicente,et al.  Epidemiology of qnrVC alleles and emergence out of the Vibrionaceae family. , 2013, Journal of medical microbiology.

[26]  C. Giske,et al.  Occurrence of virulence genes, 16S rRNA methylases, and plasmid-mediated quinolone resistance genes in CTX-M-producing Escherichia coli from Pakistan , 2013, European Journal of Clinical Microbiology & Infectious Diseases.

[27]  G. Jacoby,et al.  Mutational Analysis of Quinolone Resistance Protein QnrB1 , 2013, Antimicrobial Agents and Chemotherapy.

[28]  Mark R. Sanderson,et al.  Supplementary materials for Structure of an ‘ open ’ clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport , 2013 .

[29]  Jian Sun,et al.  Prevalence and plasmid characterization of the qnrD determinant in Enterobacteriaceae isolated from animals, retail meat products, and humans. , 2013, Microbial drug resistance.

[30]  P. Courvalin,et al.  RND-Type Efflux Pumps in Multidrug-Resistant Clinical Isolates of Acinetobacter baumannii: Major Role for AdeABC Overexpression and AdeRS Mutations , 2013, Antimicrobial Agents and Chemotherapy.

[31]  M. Kaku,et al.  Characterization of qnrB-Like Genes in Citrobacter Species of the American Type Culture Collection , 2013, Antimicrobial Agents and Chemotherapy.

[32]  K. Poole,et al.  Antibiotic Inducibility of the mexXY Multidrug Efflux Operon of Pseudomonas aeruginosa: Involvement of the MexZ Anti-Repressor ArmZ , 2013, PloS one.

[33]  G. Jacoby,et al.  Phylogenetic Analysis of Chromosomally Determined Qnr and Related Proteins , 2013, Antimicrobial Agents and Chemotherapy.

[34]  G. Kaatz,et al.  Mutagenesis and Modeling To Predict Structural and Functional Characteristics of the Staphylococcus aureus MepA Multidrug Efflux Pump , 2012, Journal of bacteriology.

[35]  F. Fernández-Cuenca,et al.  Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum-β-lactamase-producing Klebsiella pneumoniae. , 2013, The Journal of antimicrobial chemotherapy.

[36]  M. B. Pereira,et al.  A novel method to discover fluoroquinolone antibiotic resistance (qnr) genes in fragmented nucleotide sequences , 2012, BMC Genomics.

[37]  P. Nordmann,et al.  Impact of low-level fluoroquinolone resistance genes qnrA1, qnrB19 and qnrS1 on ciprofloxacin treatment of isogenic Escherichia coli strains in a murine urinary tract infection model. , 2012, The Journal of antimicrobial chemotherapy.

[38]  T. Vernet,et al.  PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. , 2012, Biochemistry.

[39]  Q. C. Truong-Bolduc,et al.  Reduced Aeration Affects the Expression of the NorB Efflux Pump of Staphylococcus aureus by Posttranslational Modification of MgrA , 2012, Journal of bacteriology.

[40]  N. Osheroff,et al.  Drug interactions with Bacillus anthracis topoisomerase IV: biochemical basis for quinolone action and resistance. , 2012, Biochemistry.

[41]  Hiroshi Nikaido,et al.  Efflux-Mediated Drug Resistance in Bacteria , 2012, Drugs.

[42]  E. Cambau,et al.  Description of a 2,683-Base-Pair Plasmid Containing qnrD in Two Providencia rettgeri Isolates , 2011, Antimicrobial Agents and Chemotherapy.

[43]  M. AbuOun,et al.  Fluoroquinolone Efflux in Streptococcus suis Is Mediated by SatAB and Not by SmrA , 2011, Antimicrobial Agents and Chemotherapy.

[44]  Q. C. Truong-Bolduc,et al.  Transcriptional Profiling Analysis of the Global Regulator NorG, a GntR-Like Protein of Staphylococcus aureus , 2011, Journal of bacteriology.

[45]  G. Jacoby,et al.  Citrobacter spp. as a Source of qnrB Alleles , 2011, Antimicrobial Agents and Chemotherapy.

[46]  G. Jacoby,et al.  Structure of QnrB1, a Plasmid-mediated Fluoroquinolone Resistance Factor* , 2011, The Journal of Biological Chemistry.

[47]  Q. C. Truong-Bolduc,et al.  Implication of the NorB Efflux Pump in the Adaptation of Staphylococcus aureus to Growth at Acid pH and in Resistance to Moxifloxacin , 2011, Antimicrobial Agents and Chemotherapy.

[48]  X. Xiong,et al.  Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: conserved surface loops direct the activity of a Qnr protein from a Gram-negative bacterium , 2011, Nucleic acids research.

[49]  S. Diggle,et al.  Quinolones: from Antibiotics to Autoinducers , 2022 .

[50]  M. Webber,et al.  High levels of multidrug resistance in clinical isolates of Gram-negative pathogens from Nigeria. , 2011, International journal of antimicrobial agents.

[51]  J. Blanchard,et al.  Structural and Biochemical Analysis of the Pentapeptide Repeat Protein EfsQnr, a Potent DNA Gyrase Inhibitor , 2010, Antimicrobial Agents and Chemotherapy.

[52]  Sanath H. Kumar,et al.  LmrS Is a Multidrug Efflux Pump of the Major Facilitator Superfamily from Staphylococcus aureus , 2010, Antimicrobial Agents and Chemotherapy.

[53]  A. Fosberry,et al.  Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance , 2010, Nature Structural &Molecular Biology.

[54]  Kristin K. Brown,et al.  Type IIA topoisomerase inhibition by a new class of antibacterial agents , 2010, Nature.

[55]  Jian-Hua Liu,et al.  Prevalence and Dissemination of oqxAB in Escherichia coli Isolates from Animals, Farmworkers, and the Environment , 2010, Antimicrobial Agents and Chemotherapy.

[56]  H. Nakaminami,et al.  Fluoroquinolone Efflux by the Plasmid-Mediated Multidrug Efflux Pump QacB Variant QacBIII in Staphylococcus aureus , 2010, Antimicrobial Agents and Chemotherapy.

[57]  Q. C. Truong-Bolduc,et al.  Phosphorylation of MgrA and Its Effect on Expression of the NorA and NorB Efflux Pumps of Staphylococcus aureus , 2010, Journal of bacteriology.

[58]  Eun Jung Lee,et al.  Bloodstream infections caused by qnr-positive Enterobacteriaceae: clinical and microbiologic characteristics and outcomes. , 2009, Diagnostic microbiology and infectious disease.

[59]  J. Campos,et al.  Emergence of CTX-M-15-producing Klebsiella pneumoniae of multilocus sequence types 1, 11, 14, 17, 20, 35 and 36 as pathogens and colonizers in newborns and adults. , 2009, The Journal of antimicrobial chemotherapy.

[60]  Xilin Zhao,et al.  Quinolones: Action and Resistance Updated , 2009, Current topics in medicinal chemistry.

[61]  G. Jacoby,et al.  oqxAB Encoding a Multidrug Efflux Pump in Human Clinical Isolates of Enterobacteriaceae , 2009, Antimicrobial Agents and Chemotherapy.

[62]  I. Laponogov,et al.  Structural insight into the quinolone–DNA cleavage complex of type IIA topoisomerases , 2009, Nature Structural &Molecular Biology.

[63]  H. Nikaido,et al.  Mechanisms of RND multidrug efflux pumps. , 2009, Biochimica et biophysica acta.

[64]  D. Hooper,et al.  New Plasmid-Mediated Quinolone Resistance Gene, qnrC, Found in a Clinical Isolate of Proteus mirabilis , 2009, Antimicrobial Agents and Chemotherapy.

[65]  G. Jacoby,et al.  Temporal Appearance of Plasmid-Mediated Quinolone Resistance Genes , 2009, Antimicrobial Agents and Chemotherapy.

[66]  R. Brennan,et al.  Structural and biochemical characterization of MepR, a multidrug binding transcription regulator of the Staphylococcus aureus multidrug efflux pump MepA , 2009, Nucleic acids research.

[67]  D. J. Clarke,et al.  DNA Topoisomerases , 2009, Methods in Molecular Biology™.

[68]  G. Jacoby,et al.  Prevalence of Plasmid-Mediated Quinolone Resistance Determinants over a 9-Year Period , 2008, Antimicrobial Agents and Chemotherapy.

[69]  F. Aarestrup,et al.  qnrD, a Novel Gene Conferring Transferable Quinolone Resistance in Salmonella enterica Serovar Kentucky and Bovismorbificans Strains of Human Origin , 2008, Antimicrobial Agents and Chemotherapy.

[70]  M. Kaku,et al.  High Prevalence of the aac(6′)-Ib-cr Gene and Its Dissemination among Enterobacteriaceae Isolates by CTX-M-15 Plasmids in Bulgaria , 2008, Antimicrobial Agents and Chemotherapy.

[71]  P. Nordmann,et al.  Plasmid-mediated quinolone resistance in Aeromonas allosaccharophila recovered from a Swiss lake. , 2008, The Journal of antimicrobial chemotherapy.

[72]  Q. C. Truong-Bolduc,et al.  Posttranslational Modification Influences the Effects of MgrA on norA Expression in Staphylococcus aureus , 2008, Journal of bacteriology.

[73]  J. Martínez,et al.  Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants , 2008, BMC Microbiology.

[74]  Yanpeng Ding,et al.  NorB, an Efflux Pump in Staphylococcus aureus Strain MW2, Contributes to Bacterial Fitness in Abscesses , 2008, Journal of bacteriology.

[75]  G. Jacoby,et al.  Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6')-Ib and its bifunctional, fluoroquinolone-active AAC(6')-Ib-cr variant. , 2008, Biochemistry.

[76]  J. Pachón,et al.  Activity of ciprofloxacin and levofloxacin in experimental pneumonia caused by Klebsiella pneumoniae deficient in porins, expressing active efflux and producing QnrA1. , 2008, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[77]  A. Vicente,et al.  New qnr Gene Cassettes Associated with Superintegron Repeats in Vibrio cholerae O1 , 2008, Emerging infectious diseases.

[78]  Á. Pascual,et al.  Qnr-like pentapeptide repeat proteins in gram-positive bacteria. , 2008, The Journal of antimicrobial chemotherapy.

[79]  E. Cambau,et al.  Low selection of topoisomerase mutants from strains of Escherichia coli harbouring plasmid-borne qnr genes. , 2008, The Journal of antimicrobial chemotherapy.

[80]  L. Martínez-Martínez,et al.  qnr Gene Nomenclature , 2008, Antimicrobial Agents and Chemotherapy.

[81]  I. Broutin,et al.  Enzyme structural plasticity and the emergence of broad‐spectrum antibiotic resistance , 2008, EMBO reports.

[82]  Xilin Zhao,et al.  Quinolone-Mediated Bacterial Death , 2007, Antimicrobial Agents and Chemotherapy.

[83]  S. Sørensen,et al.  Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. , 2007, The Journal of antimicrobial chemotherapy.

[84]  K. Kimura,et al.  New Plasmid-Mediated Fluoroquinolone Efflux Pump, QepA, Found in an Escherichia coli Clinical Isolate , 2007, Antimicrobial Agents and Chemotherapy.

[85]  P. Courvalin,et al.  Transferable Resistance to Aminoglycosides by Methylation of G1405 in 16S rRNA and to Hydrophilic Fluoroquinolones by QepA-Mediated Efflux in Escherichia coli , 2007, Antimicrobial Agents and Chemotherapy.

[86]  L. Martínez-Martínez,et al.  Mutant Prevention Concentrations of Fluoroquinolones for Enterobacteriaceae Expressing the Plasmid-Carried Quinolone Resistance Determinant qnrA1 , 2007, Antimicrobial Agents and Chemotherapy.

[87]  Q. C. Truong-Bolduc,et al.  The Transcriptional Regulators NorG and MgrA Modulate Resistance to both Quinolones and β-Lactams in Staphylococcus aureus , 2007, Journal of bacteriology.

[88]  S. Gracheck,et al.  In Vitro and In Vivo Activities of PD 0305970 and PD 0326448, New Bacterial Gyrase/Topoisomerase Inhibitors with Potent Antibacterial Activities versus Multidrug-Resistant Gram-Positive and Fastidious Organism Groups , 2007, Antimicrobial Agents and Chemotherapy.

[89]  P. Rice,et al.  An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus , 2006, Nature chemical biology.

[90]  A. Robicsek,et al.  qnrB, Another Plasmid-Mediated Gene for Quinolone Resistance , 2006, Antimicrobial Agents and Chemotherapy.

[91]  G. Kaatz,et al.  MepR, a Repressor of the Staphylococcus aureus MATE Family Multidrug Efflux Pump MepA, Is a Substrate-Responsive Regulatory Protein , 2006, Antimicrobial Agents and Chemotherapy.

[92]  Q. C. Truong-Bolduc,et al.  NorC, a New Efflux Pump Regulated by MgrA of Staphylococcus aureus , 2006, Antimicrobial Agents and Chemotherapy.

[93]  T. Tsuchiya,et al.  Gene cloning and characterization of SdrM, a chromosomally-encoded multidrug efflux pump, from Staphylococcus aureus. , 2006, Biological & pharmaceutical bulletin.

[94]  J. Colmer-Hamood,et al.  mvaT mutation modifies the expression of the Pseudomonas aeruginosa multidrug efflux operon mexEF-oprN. , 2006, FEMS microbiology letters.

[95]  A. Robicsek,et al.  Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase , 2006, Nature Medicine.

[96]  Alain Liard,et al.  Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants. , 2005, The Journal of antimicrobial chemotherapy.

[97]  G. McDermott,et al.  A Periplasmic Drug-Binding Site of the AcrB Multidrug Efflux Pump: a Crystallographic and Site-Directed Mutagenesis Study , 2005, Journal of bacteriology.

[98]  Alain Liard,et al.  Origin of Plasmid-Mediated Quinolone Resistance Determinant QnrA , 2005, Antimicrobial Agents and Chemotherapy.

[99]  Anthony Maxwell,et al.  A Fluoroquinolone Resistance Protein from Mycobacterium tuberculosis That Mimics DNA , 2005, Science.

[100]  D. Hooper,et al.  Dual Targeting of Topoisomerase IV and Gyrase To Reduce Mutant Selection: Direct Testing of the Paradigm by Using WCK-1734, a New Fluoroquinolone, and Ciprofloxacin , 2005, Antimicrobial Agents and Chemotherapy.

[101]  Q. C. Truong-Bolduc,et al.  MgrA Is a Multiple Regulator of Two New Efflux Pumps in Staphylococcus aureus , 2005, Journal of bacteriology.

[102]  W. V. van Wamel,et al.  Rat/MgrA, a Regulator of Autolysis, Is a Regulator of Virulence Genes in Staphylococcus aureus , 2005, Infection and Immunity.

[103]  K. Sakae,et al.  Cloning of a Novel Gene for Quinolone Resistance from a Transferable Plasmid in Shigella flexneri 2b , 2005, Antimicrobial Agents and Chemotherapy.

[104]  G. Jacoby,et al.  Interaction of the Plasmid-Encoded Quinolone Resistance Protein Qnr with Escherichia coli DNA Gyrase , 2005, Antimicrobial Agents and Chemotherapy.

[105]  P. Heisig,et al.  Mechanisms of quinolone resistance , 2005, Infection.

[106]  T. Nakae,et al.  MexZ-mediated regulation of mexXY multidrug efflux pump expression in Pseudomonas aeruginosa by binding on the mexZ-mexX intergenic DNA. , 2004, FEMS microbiology letters.

[107]  P. O’Toole,et al.  Novel Chromosomally Encoded Multidrug Efflux Transporter MdeA in Staphylococcus aureus , 2004, Antimicrobial Agents and Chemotherapy.

[108]  H. Nikaido,et al.  AcrB Multidrug Efflux Pump of Escherichia coli: Composite Substrate-Binding Cavity of Exceptional Flexibility Generates Its Extremely Wide Substrate Specificity , 2003, Journal of bacteriology.

[109]  H. Nikaido,et al.  Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein , 2003, Molecular microbiology.

[110]  E. L. Zechiedrich,et al.  Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli. , 2003, The Journal of antimicrobial chemotherapy.

[111]  C. Jacquet,et al.  Efflux Pump Lde Is Associated with Fluoroquinolone Resistance in Listeria monocytogenes , 2003, Antimicrobial Agents and Chemotherapy.

[112]  S. Sørensen,et al.  Conjugative Plasmid Conferring Resistance to Olaquindox , 2003, Antimicrobial Agents and Chemotherapy.

[113]  O. Sahin,et al.  In Vivo Selection of Campylobacter Isolates with High Levels of Fluoroquinolone Resistance Associated with gyrA Mutations and the Function of the CmeABC Efflux Pump , 2003, Antimicrobial Agents and Chemotherapy.

[114]  S. Hagen,et al.  Structure-Activity Relationships of the Quinolone Antibacterials in the New Millennium: Some Things Change and Some Do Not , 2003 .

[115]  D. Hooper MECHANISMS OF QUINOLONE RESISTANCE , 2003 .

[116]  R. Skurray,et al.  Regulation of Bacterial Drug Export Systems , 2002, Microbiology and Molecular Biology Reviews.

[117]  H. Hiasa The Glu-84 of the ParC subunit plays critical roles in both topoisomerase IV-quinolone and topoisomerase IV-DNA interactions. , 2002, Biochemistry.

[118]  J. Pagés,et al.  The AcrAB-TolC Efflux Pump Contributes to Multidrug Resistance in the Nosocomial Pathogen Enterobacter aerogenes , 2002, Antimicrobial Agents and Chemotherapy.

[119]  Qijing Zhang,et al.  CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni , 2002, Antimicrobial Agents and Chemotherapy.

[120]  G. Jacoby,et al.  Mechanism of plasmid-mediated quinolone resistance , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[121]  L. Grinius,et al.  NorA Functions as a Multidrug Efflux Protein in both Cytoplasmic Membrane Vesicles and Reconstituted Proteoliposomes , 2002, Journal of bacteriology.

[122]  H. Imberechts,et al.  The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204. , 2002, Microbial drug resistance.

[123]  F. Tenover,et al.  Genetic Analyses of Mutations Contributing to Fluoroquinolone Resistance in Clinical Isolates ofStreptococcus pneumoniae , 2001, Antimicrobial Agents and Chemotherapy.

[124]  K. Poole,et al.  SmeDEF Multidrug Efflux Pump Contributes to Intrinsic Multidrug Resistance in Stenotrophomonas maltophilia , 2001, Antimicrobial Agents and Chemotherapy.

[125]  F. Yoshimura,et al.  A MATE Family Multidrug Efflux Transporter Pumps out Fluoroquinolones in Bacteroides thetaiotaomicron , 2001, Antimicrobial Agents and Chemotherapy.

[126]  C. Montero,et al.  Intrinsic Resistance of Mycobacteriumsmegmatis to Fluoroquinolones May Be Influenced by New Pentapeptide Protein MfpA , 2001, Antimicrobial Agents and Chemotherapy.

[127]  G. Rapoport,et al.  The two‐component system ArlS–ArlR is a regulator of virulence gene expression in Staphylococcus aureus , 2001, Molecular microbiology.

[128]  L. M. Wentzell,et al.  The complex of DNA gyrase and quinolone drugs on DNA forms a barrier to the T7 DNA polymerase replication complex. , 2000, Journal of molecular biology.

[129]  X. Li,et al.  Influence of the MexA-MexB-oprM multidrug efflux system on expression of the MexC-MexD-oprJ and MexE-MexF-oprN multidrug efflux systems in Pseudomonas aeruginosa. , 2000, The Journal of antimicrobial chemotherapy.

[130]  T. Tsuchiya,et al.  NorM of Vibrio parahaemolyticus Is an Na+-Driven Multidrug Efflux Pump , 2000, Journal of bacteriology.

[131]  H. W. Veen,et al.  An ABC-type multidrug transporter of Lactococcus lactis possesses an exceptionally broad substrate specificity. , 2000, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[132]  M. Putman,et al.  Molecular Properties of Bacterial Multidrug Transporters , 2000, Microbiology and Molecular Biology Reviews.

[133]  N. Masuda,et al.  Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[134]  R. Owens,et al.  Clinical use of the fluoroquinolones. , 2000, The Medical clinics of North America.

[135]  A. Alonso,et al.  Cloning and Characterization of SmeDEF, a Novel Multidrug Efflux Pump from Stenotrophomonas maltophilia , 2000, Antimicrobial Agents and Chemotherapy.

[136]  D. Hooper,et al.  Selective Targeting of Topoisomerase IV and DNA Gyrase in Staphylococcus aureus: Different Patterns of Quinolone- Induced Inhibition of DNA Synthesis , 2000, Antimicrobial Agents and Chemotherapy.

[137]  D. Hooper,et al.  A New Two-Component Regulatory System Involved in Adhesion, Autolysis, and Extracellular Proteolytic Activity ofStaphylococcus aureus , 2000, Journal of bacteriology.

[138]  X. Li,et al.  Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. , 2000, The Journal of antimicrobial chemotherapy.

[139]  S. Levy,et al.  The mar regulon: multiple resistance to antibiotics and other toxic chemicals. , 1999, Trends in microbiology.

[140]  Angela Lee,et al.  Use of a Genetic Approach To Evaluate the Consequences of Inhibition of Efflux Pumps in Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[141]  L. Fisher,et al.  Streptococcus pneumoniae DNA Gyrase and Topoisomerase IV: Overexpression, Purification, and Differential Inhibition by Fluoroquinolones , 1999, Antimicrobial Agents and Chemotherapy.

[142]  Deborah Fass,et al.  Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands , 1999, Nature Structural Biology.

[143]  K. Nakaya,et al.  Detection of OXA-4 beta-lactamase in Pseudomonas aeruginosa isolates by genetic methods. , 1999, The Journal of antimicrobial chemotherapy.

[144]  R. Wise,et al.  Identification of an Efflux Pump Gene,pmrA, Associated with Fluoroquinolone Resistance inStreptococcus pneumoniae , 1999, Antimicrobial Agents and Chemotherapy.

[145]  F. Mégraud,et al.  Epidemiology and mechanism of antibiotic resistance in Helicobacter pylori. , 1998, Gastroenterology.

[146]  L. Fisher,et al.  DNA Gyrase and Topoisomerase IV Are Dual Targets of Clinafloxacin Action in Streptococcus pneumoniae , 1998, Antimicrobial Agents and Chemotherapy.

[147]  A. Khodursky,et al.  The Mechanism of Inhibition of Topoisomerase IV by Quinolone Antibacterials* , 1998, The Journal of Biological Chemistry.

[148]  D. Hooper Bacterial topoisomerases, anti-topoisomerases, and anti-topoisomerase resistance. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[149]  F. Yoshimura,et al.  Active Efflux of Norfloxacin byBacteroides fragilis , 1998, Antimicrobial Agents and Chemotherapy.

[150]  K. Köhrer,et al.  Characterization of grlA, grlB, gyrA, and gyrB Mutations in 116 Unrelated Isolates of Staphylococcus aureus and Effects of Mutations on Ciprofloxacin MIC , 1998, Antimicrobial Agents and Chemotherapy.

[151]  G. Jacoby,et al.  Quinolone resistance from a transferable plasmid , 1998, The Lancet.

[152]  T. Köhler,et al.  Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.

[153]  K. Drlica,et al.  DNA gyrase, topoisomerase IV, and the 4-quinolones , 1997, Microbiology and molecular biology reviews : MMBR.

[154]  Anthony Maxwell,et al.  Crystal structure of the breakage–reunion domain of DNA gyrase , 1997, Nature.

[155]  S. Schuldiner,et al.  Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr , 1997, Journal of bacteriology.

[156]  R Ohki,et al.  bmr3, a third multidrug transporter gene of Bacillus subtilis , 1997, Journal of bacteriology.

[157]  L. Fisher,et al.  Targeting of DNA gyrase in Streptococcus pneumoniae by sparfloxacin: selective targeting of gyrase or topoisomerase IV by quinolones , 1997, Antimicrobial agents and chemotherapy.

[158]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[159]  D. Hooper,et al.  Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of the parE gene encoding a subunit of topoisomerase IV , 1997, Antimicrobial agents and chemotherapy.

[160]  J. Crouzet,et al.  Differential behaviors of Staphylococcus aureus and Escherichia coli type II DNA topoisomerases , 1996, Antimicrobial agents and chemotherapy.

[161]  H. Hiasa,et al.  DNA Strand Cleavage Is Required for Replication Fork Arrest by a Frozen Topoisomerase-Quinolone-DNA Ternary Complex* , 1996, The Journal of Biological Chemistry.

[162]  D. Heinrichs,et al.  Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression , 1996, Antimicrobial agents and chemotherapy.

[163]  D. Hooper,et al.  Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus , 1996, Antimicrobial agents and chemotherapy.

[164]  K. Poole,et al.  Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.

[165]  K. Skarstad,et al.  Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication , 1996, Journal of bacteriology.

[166]  A. Khodursky,et al.  Topoisomerase IV is a target of quinolones in Escherichia coli. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[167]  A. Driessen,et al.  The Lactococcal lmrP Gene Encodes a Proton Motive Force- dependent Drug Transporter (*) , 1995, The Journal of Biological Chemistry.

[168]  L. Piddock,et al.  A novel gyrB mutation in a fluoroquinolone-resistant clinical isolate of Salmonella typhimurium. , 1995, FEMS microbiology letters.

[169]  A. Matin,et al.  EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB , 1995, Journal of bacteriology.

[170]  C. Vojtko,et al.  In vitro evaluation of ABT-719, a novel DNA gyrase inhibitor , 1995, Antimicrobial agents and chemotherapy.

[171]  I. Eperon,et al.  The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. , 1994, Journal of molecular biology.

[172]  H. Ito,et al.  Quinolone resistance mutations in the DNA gyrase gyrA and gyrB genes of Staphylococcus aureus , 1994, Antimicrobial Agents and Chemotherapy.

[173]  S. Gracheck,et al.  Genetic relationship between soxRS and mar loci in promoting multiple antibiotic resistance in Escherichia coli , 1994, Antimicrobial Agents and Chemotherapy.

[174]  K. Poole,et al.  Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon , 1993, Journal of bacteriology.

[175]  J. Smith,et al.  4-Quinolone bactericidal mechanisms. , 1993, Arzneimittel-Forschung.

[176]  H. Ito,et al.  Mechanism of action of quinolones against Escherichia coli DNA gyrase , 1993, Antimicrobial Agents and Chemotherapy.

[177]  J. H. Chou,et al.  Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus , 1993, Journal of bacteriology.

[178]  A. Maxwell,et al.  A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex , 1993, Antimicrobial Agents and Chemotherapy.

[179]  D. Hooper,et al.  A novel locus conferring fluoroquinolone resistance in Staphylococcus aureus , 1991, Journal of bacteriology.

[180]  K. Nikaido,et al.  Identification and characterization of porins in Pseudomonas aeruginosa. , 1991, The Journal of biological chemistry.

[181]  S. Nakamura,et al.  Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli , 1990, Antimicrobial Agents and Chemotherapy.

[182]  J. Smith,et al.  Protein- and RNA-synthesis independent bactericidal activity of ciprofloxacin that involves the A subunit of DNA gyrase. , 1991, Journal of medical microbiology.

[183]  R. N. Walters,et al.  Correlation of quinolone MIC and inhibition of DNA, RNA, and protein synthesis and induction of the SOS response in Escherichia coli , 1990, Antimicrobial Agents and Chemotherapy.

[184]  S. Nakamura,et al.  Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli , 1990, Antimicrobial Agents and Chemotherapy.

[185]  P. Courvalin Plasmid-mediated 4-quinolone resistance: a real or apparent absence? , 1990, Antimicrobial Agents and Chemotherapy.

[186]  K. Ubukata,et al.  Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus , 1989, Antimicrobial Agents and Chemotherapy.

[187]  W. Kohlbrenner,et al.  Mechanism of quinolone inhibition of DNA gyrase. Appearance of unique norfloxacin binding sites in enzyme-DNA complexes. , 1989, The Journal of biological chemistry.

[188]  M. Tsukamura,et al.  Therapeutic effect of a new antibacterial substance ofloxacin (DL8280) on pulmonary tuberculosis. , 2015, The American review of respiratory disease.

[189]  N. Cozzarelli,et al.  Escherichia coli Mutants Thermosensitive for Deoxyribonucleic Acid Gyrase Subunit A: Effects on Deoxyribonucleic Acid Replication, Transcription, and Bacteriophage Growth , 1979, Journal of bacteriology.

[190]  L. Burman Apparent absence of transferable resistance to nalidixic acid in pathogenic Gram-negative bacteria. , 1977, The Journal of antimicrobial chemotherapy.

[191]  G. Y. Lesher,et al.  1,8-NAPHTHYRIDINE DERIVATIVES. A NEW CLASS OF CHEMOTHERAPEUTIC AGENTS. , 1962, Journal of medicinal and pharmaceutical chemistry.