Scenario Approach to Probabilistic Design

This chapter describes a non-sequential randomized technique for achieving probabilistic robustness in design. For problems where the performance function is convex in the design parameters, the simple idea of scenario design is to use a finite number of random samples of the uncertainty (the scenarios) to construct a standard convex optimization problem that can then be solved efficiently to obtain the desired design. The key feature of scenario theory, however, is to derive a rigorous probabilistic reliability certificate for the obtained design. The fundamental results of scenario theory are presented, together with extensions pertaining to scenario optimization with violated constraints and relations between scenario optimization and chance-constrained optimization.

[1]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[2]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[3]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[4]  Giuseppe Carlo Calafiore,et al.  Random Convex Programs , 2010, SIAM J. Optim..

[5]  Roberto Tempo,et al.  On the Sample Complexity of Probabilistic Analysis and Design Methods , 2010 .

[6]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[7]  Yoshito Ohta,et al.  Perspectives in Mathematical System Theory, Control, and Signal Processing , 2010 .

[8]  H. Kimura,et al.  Probabilistic model‐set identification not assuming plant linearity , 2004 .

[9]  William S. Levine,et al.  Control system advanced methods , 2011 .

[10]  Marco C. Campi,et al.  The exact feasibility of randomized solutions of robust convex programs , 2008 .

[11]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[12]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[13]  William S. Levine,et al.  The Control Handbook , 2005 .

[14]  Marco C. Campi,et al.  A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality , 2011, J. Optim. Theory Appl..

[15]  Giuseppe Carlo Calafiore,et al.  Interval predictor models: Identification and reliability , 2009, Autom..

[16]  Rafael Castro-Linares,et al.  Trajectory tracking for non-holonomic cars: A linear approach to controlled leader-follower formation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[17]  Arkadi Nemirovski,et al.  On Safe Tractable Approximations of Chance-Constrained Linear Matrix Inequalities , 2009, Math. Oper. Res..

[18]  Peter Kall,et al.  Stochastic Programming , 1995 .

[19]  S. Bhattacharyya,et al.  A linear programming approach to controller design , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[20]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[21]  Marco C. Campi,et al.  The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs , 2008, SIAM J. Optim..

[22]  George B. Dantzig,et al.  Multi-stage stochastic linear programs for portfolio optimization , 1993, Ann. Oper. Res..

[23]  S. Uryasev Probabilistic constrained optimization : methodology and applications , 2000 .