METHODOLOGIES FOR EXPERIMENTAL DESIGN: A SURVEY, COMPARISON, AND FUTURE PREDICTIONS

A literature review on methodologies for experimental design attempts to synthesize some of Taguchi's contributions to quality engineering and also provides a critical evaluation of his statistical methods. The role of computer-aided design of experime..

[1]  J. Stuart Hunter,et al.  Statistical Design Applied to Product Design , 1985 .

[2]  Peter R. Nelson,et al.  Design and Analysis of Experiments, 3rd Ed. , 1991 .

[3]  Visakan Kadirkamanathan,et al.  Sequential Adaptation of Radial Basis Function Neural Networks and its Application to Time-series Prediction , 1990, NIPS 1990.

[4]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[5]  Takeshi Yamakawa,et al.  A fuzzy inference engine in nonlinear analog mode and its application to a fuzzy logic control , 1993, IEEE Trans. Neural Networks.

[6]  L. Zadeh,et al.  Towards a theory of fuzzy systems , 1996 .

[7]  J. Pignatiello,et al.  Discussion: Off-Line Quality Control, Parameter Design, and the Taguchi Method , 1985 .

[8]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[9]  R. Plackett,et al.  THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS , 1946 .

[10]  Anne C. Shoemaker,et al.  Robust design: A cost-effective method for improving manufacturing processes , 1986, AT&T Technical Journal.

[11]  Jerome Sacks,et al.  Computer Experiments for Quality Control by Parameter Design , 1990 .

[12]  Stephen Grossberg,et al.  Nonlinear neural networks: Principles, mechanisms, and architectures , 1988, Neural Networks.

[13]  T. R. Bement,et al.  Taguchi techniques for quality engineering , 1995 .

[14]  Madan M. Gupta Fuzzy logic and neural networks , 1992, [Proceedings 1992] IEEE International Conference on Systems Engineering.

[15]  John F. Kolen,et al.  Learning in parallel distributed processing networks: Computational complexity and information content , 1991, IEEE Trans. Syst. Man Cybern..

[16]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[17]  A. Bendell,et al.  Taguchi methods : applications in world industry , 1989 .

[18]  R. Roy A Primer on the Taguchi Method , 1990 .

[19]  A. Khuri,et al.  Simultaneous Optimization of Multiple Responses Represented by Polynomial Regression Functions , 1981 .

[20]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[21]  André I. Khuri,et al.  A Test for Lack of Fit of a Linear Multiresponse Model , 1985 .

[22]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[23]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[24]  Neil R. Ullman,et al.  Signal-to-noise ratios, performance criteria, and transformations , 1988 .

[25]  P. A. Jokinen On the relations between radial basis function networks and fuzzy systems , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[26]  Soren Bisgaard Quality Engineering and Taguchi Methods: A Perspective , 1990 .

[27]  James D. Keeler,et al.  Algorithms for Better Representation and Faster Learning in Radial Basis Function Networks , 1989, NIPS.

[28]  Stephen Jones,et al.  [Testing in Industrial Experiments with Ordered Categorical Data]: Discussion , 1986 .

[29]  William J. Hill,et al.  A Review of Response Surface Methodology: A Literature Survey* , 1966 .

[30]  Robert M. Farber,et al.  How Neural Nets Work , 1987, NIPS.

[31]  Donald F. Specht,et al.  A general regression neural network , 1991, IEEE Trans. Neural Networks.

[32]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks. I. Classification , 1992, IEEE Trans. Neural Networks.

[33]  A. Sarajedini,et al.  The best of both worlds: Casasent networks integrate multilayer perceptrons and radial basis functions , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[34]  Ronald D. Snee,et al.  Communications between statisticians and engineers/physical scientists , 1990 .

[35]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[36]  D. F. Morrison,et al.  Multivariate Statistical Methods , 1968 .

[37]  Genichi Taguchi,et al.  Quality Engineering through Design Optimization , 1989 .

[38]  G. Box,et al.  An investigation of the method of accumulation analysis , 1990 .

[39]  Douglas M. Bates,et al.  Multiresponse Estimation With Special Application to Linear Systems of Differential Equations , 1985 .

[40]  John F. MacGregor,et al.  ASQC Chemical Division Technical Conference 1971 Prize Winning Paper Some Problems Associated with the Analysis of Multiresponse Data , 1973 .

[41]  F. Girosi Some extensions of radial basis functions and their applications in artificial intelligence , 1992 .

[42]  R. N. Kackar Off-Line Quality Control, Parameter Design, and the Taguchi Method , 1985 .

[43]  Takayuki Ito,et al.  Neocognitron: A neural network model for a mechanism of visual pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[44]  Teuvo Kohonen,et al.  Representation of Associated Data by Matrix Operators , 1973, IEEE Transactions on Computers.

[45]  Pierre Baldi,et al.  Computing with Arrays of Bell-Shaped and Sigmoid Functions , 1990, NIPS.

[46]  Daryl Pregibon,et al.  A data analysis strategy for quality engineering experiments , 1986, AT&T Technical Journal.

[47]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[48]  R. P. Lippmann A critical overview of neural network pattern classifiers , 1991, Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop.

[49]  G. Geoffrey Vining,et al.  Combining Taguchi and Response Surface Philosophies: A Dual Response Approach , 1990 .

[50]  Madan Gupta,et al.  Multivariable Structure of Fuzzy Control Systems , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[51]  Lyle H. Ungar,et al.  Using radial basis functions to approximate a function and its error bounds , 1992, IEEE Trans. Neural Networks.

[52]  Raghu N. Kacker,et al.  Performance measures independent of adjustment , 1987 .

[53]  Joseph J. Pignatiello,et al.  An experimental design strategy for designing robust systems using discrete-event simulation , 1991, Simul..

[54]  John Moody,et al.  Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.

[55]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[56]  Marilyn Hwan,et al.  Quality through design , 1989 .

[57]  William Q. Meeker,et al.  A Computer Program for Evaluating and Comparing Experimental Designs and Some Applications , 1975 .

[58]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[59]  A. C. Shoemaker,et al.  Performance Measures Independent of Adjustment: An Explanation and Extension of Taguchi's Signal-to-Noise Ratios , 1987 .

[60]  Arthur M. Schneiderman,et al.  Optimum Quality Costs and Zero Defects: Are They Contradictory Concepts? , 1986 .

[61]  L. Ljung,et al.  Issues in system identification , 1991, IEEE Control Systems.

[62]  L. Wang,et al.  Fuzzy systems are universal approximators , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[63]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[64]  Conrad A. Fung,et al.  An explanation and critique of taguchi's contributions to quality engineering , 1988 .

[65]  J. S. Hunter,et al.  Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. , 1979 .

[66]  Raghu N. Kacker,et al.  Graphical and computer-aided approaches to plan experiments , 1989 .

[67]  Henry P. Wynn,et al.  Quality through design : experimental design, off-line quality control and Taguchi's contributions , 1991 .

[68]  R. Fisher Statistical Methods for Research Workers , 1971 .

[69]  N. Logothetis,et al.  Off‐line quality control and ill‐designed data , 1987 .

[70]  Jean-Pierre Martens,et al.  A fast and robust learning algorithm for feedforward neural networks , 1991, Neural Networks.

[71]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[72]  J. Senturia System of Experimental Design (Vol. 2) , 1989 .

[73]  Chris Bishop,et al.  Improving the Generalization Properties of Radial Basis Function Neural Networks , 1991, Neural Computation.

[74]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[75]  Madan M. Gupta,et al.  Introduction to Fuzzy Arithmetic , 1991 .

[76]  Bart Kosko,et al.  Fuzzy knowledge combination , 1986, Int. J. Intell. Syst..

[77]  James D. Keeler,et al.  Layered Neural Networks with Gaussian Hidden Units as Universal Approximations , 1990, Neural Computation.