A Negotiation Framework for the Cloud Management System using Similarity and Gale Shapely Stable Matching Approach

One of the major issues in emerging cloud management system needs the efficient service level agreement negotiation framework, with an optimal negotiation strategy. Most researchers focus mainly on the atomic service negotiation model, with the assistance of the Agent Controller in the broker part to reduce the total negotiation time, and communication overhead to some extent. This research focuses mainly on composite service negotiation, to further minimize both the total negotiation time and communication overhead through the pre-request optimization of broker strategy. The main objective of this research work is to introduce an Automated Dynamic Service Level Agreement Negotiation Framework (ADSLANF), which consists of an Intelligent Third-party Broker for composite service negotiation between the consumer and the service provider. A broker consists of an Intelligent Third-party Broker Agent, Agent Controller and Additional Agent Controller for managing and controlling its negotiation strategy. The Intelligent third-party broker agent manages the composite service by assigning its atomic services to multiple Agent Controllers. Using the Additional Agent Controllers, the Agent Controllers manage the concurrent negotiation with multiple service providers. In this process, the total negotiation time value is reduced partially. Further, the negotiation strategy is optimized in two stages, viz., Classified Similarity Matching (CSM) approach, and the Truncated Negotiation Group Gale Shapely Stable Matching (TNGGSSM) approach, to minimize the communication overhead.