Robust Incremental State Estimation Through Covariance Adaptation

Recent advances in the fields of robotics and automation have spurred significant interest in robust state estimation. To enable robust state estimation, several methodologies have been proposed. One such technique, which has shown promising performance, is the concept of iteratively estimating a Gaussian Mixture Model (GMM), based upon the state estimation residuals, to characterize the measurement uncertainty model. Through this iterative process, the measurement uncertainty model is more accurately characterized, which enables robust state estimation through the appropriate de-weighting of erroneous observations. This approach, however, has traditionally required a batch estimation framework to enable the estimation of the measurement uncertainty model, which is not advantageous to robotic applications. In this letter, we propose an efficient, incremental extension to the measurement uncertainty model estimation paradigm. The incremental covariance estimation (ICE) approach, as detailed within this paper, is evaluated on several collected data sets, where it is shown to provide a significant increase in localization accuracy when compared to other state-of-the-art robust, incremental estimation algorithms.

[1]  Niko Sünderhauf,et al.  Switchable constraints for robust pose graph SLAM , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Peter Protzel,et al.  Robust Sensor Fusion with Self-Tuning Mixture Models , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[3]  Yasir Latif,et al.  Realizing, reversing, recovering: Incremental robust loop closing over time using the iRRR algorithm , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Clark N. Taylor,et al.  Batch Measurement Error Covariance Estimation for Robust Localization , 2018, Proceedings of the 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018).

[5]  Nanning Zheng,et al.  Accurate Mix-Norm-Based Scan Matching , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[6]  Edwin Olson,et al.  Inference on networks of mixtures for robust robot mapping , 2013, Int. J. Robotics Res..

[7]  F. Dellaert Factor Graphs and GTSAM: A Hands-on Introduction , 2012 .

[8]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[9]  Wolfram Burgard,et al.  Robust map optimization using dynamic covariance scaling , 2013, 2013 IEEE International Conference on Robotics and Automation.

[10]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[11]  Zhengyou Zhang,et al.  Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..

[12]  Peter Protzel,et al.  Incrementally learned Mixture Models for GNSS Localization , 2019, 2019 IEEE Intelligent Vehicles Symposium (IV).

[13]  Frank Dellaert,et al.  The Bayes Tree: An Algorithmic Foundation for Probabilistic Robot Mapping , 2010, WAFR.

[14]  A. J. Van,et al.  Theory and Performance of Narrow Correlator Spacing in a GPS Receiver , 1992 .

[15]  Peter Protzel,et al.  Expectation-Maximization for Adaptive Mixture Models in Graph Optimization , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[16]  Hongbin Wang,et al.  Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering , 2005, SPIE Defense + Commercial Sensing.

[17]  Ryan M. Watson,et al.  Robust Navigation In GNSS Degraded Environment Using Graph Optimization , 2017, ArXiv.

[18]  Frank Dellaert,et al.  iSAM2: Incremental smoothing and mapping using the Bayes tree , 2012, Int. J. Robotics Res..

[19]  D. Simon Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches , 2006 .

[20]  F. Hampel Contributions to the theory of robust estimation , 1968 .

[21]  Olivier Ledoit,et al.  Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size , 2002 .

[22]  Michael J. Rycroft,et al.  Understanding GPS. Principles and Applications , 1997 .

[23]  Michael I. Jordan,et al.  Variational inference for Dirichlet process mixtures , 2006 .

[24]  Clark N. Taylor,et al.  Enabling Robust State Estimation Through Measurement Error Covariance Adaptation , 2019, IEEE Transactions on Aerospace and Electronic Systems.

[25]  Frank Kirchner,et al.  Gaussian process estimation of odometry errors for localization and mapping , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[26]  Pau Closas,et al.  GNSS-SDR: An Open Source Tool for Researchers and Developers , 2011 .

[27]  Edwin Olson,et al.  Single-Cluster Spectral Graph Partitioning for Robotics Applications , 2005, Robotics: Science and Systems.

[28]  Frank Dellaert,et al.  Factor Graphs for Robot Perception , 2017, Found. Trends Robotics.

[29]  Torsten Mayer-Gürr,et al.  GRACE gravity field recovery with background model uncertainties , 2019, Journal of Geodesy.

[30]  François Pomerleau,et al.  Learning a Bias Correction for Lidar-Only Motion Estimation , 2018, 2018 15th Conference on Computer and Robot Vision (CRV).

[31]  Roland Siegwart,et al.  Self-tuning M-estimators , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[32]  Frank Dellaert,et al.  Selecting good measurements via ℓ1 relaxation: A convex approach for robust estimation over graphs , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[34]  Daniel Steinberg An Unsupervised Approach to Modelling Visual Data , 2013 .

[35]  Ryan M. Watson,et al.  Evaluation of kinematic precise point positioning convergence with an incremental graph optimizer , 2018, 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS).

[36]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[37]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[38]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[39]  Xiaodong Wang,et al.  Monte Carlo methods for signal processing: a review in the statistical signal processing context , 2005, IEEE Signal Processing Magazine.

[40]  Frank Dellaert,et al.  Fast Incremental Square Root Information Smoothing , 2007, IJCAI.