A mixture regularized rao-blackwellized particle filter for terrain positioning
暂无分享,去创建一个
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] Karim Dahia,et al. Nouvelles méthodes en filtrage particulaire : application au recalage de navigation inertielle par mesures altimétriques , 2005 .
[3] N. Higham. COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE MATRIX , 1988 .
[4] S. Koopman,et al. Monte Carlo estimation for nonlinear non-Gaussian state space models , 2007 .
[5] G. Casella,et al. Rao-Blackwellisation of sampling schemes , 1996 .
[6] Karim Dahia,et al. Robust regularized particle filter for terrain navigation , 2011, 14th International Conference on Information Fusion.
[7] Christian Musso,et al. Proposal distribution for particle filtering applied to terrain navigation , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).
[8] Fredrik Gustafsson,et al. Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..
[9] James J. Little,et al. A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.
[10] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[11] Carlos H. Muravchik,et al. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..
[12] Niclas Bergman,et al. Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .
[13] Christian Musso,et al. Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.
[14] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[15] Wolfram Burgard,et al. Particle Filters for Mobile Robot Localization , 2001, Sequential Monte Carlo Methods in Practice.
[16] Christian Musso,et al. Introducing the Laplace approximation in particle filtering , 2011, 14th International Conference on Information Fusion.
[17] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[18] Patrick Pérez,et al. Maintaining multimodality through mixture tracking , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[19] Thomas B. Schön,et al. Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.
[20] J. Geweke,et al. Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .
[21] Branko Ristic,et al. Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .
[22] Paul D. Groves,et al. Terrain-Referenced Navigation Using the IGMAP Data Fusion Algorithm , 2005 .
[23] Wolfram Burgard,et al. Fast and accurate SLAM with Rao-Blackwellized particle filters , 2007, Robotics Auton. Syst..
[24] Jun S. Liu,et al. Mixture Kalman filters , 2000 .
[25] A. Doucet,et al. Particle filtering for partially observed Gaussian state space models , 2002 .
[26] Simon J. Godsill,et al. Particle filtering with progressive Gaussian approximations to the optimal importance density , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
[27] F. Gustafsson,et al. Marginalized Particle Filter for Accurate and Reliable Terrain-Aided Navigation , 2009, IEEE Transactions on Aerospace and Electronic Systems.
[28] Nando de Freitas,et al. The Unscented Particle Filter , 2000, NIPS.
[29] Jun S. Liu,et al. Sequential Imputations and Bayesian Missing Data Problems , 1994 .