Efficient Fitting and Rendering of Large Scattered Data Sets Using Subdivision Surfaces

We present a method to efficiently construct and render a smooth surface for approximation of large functional scattered data. Using a subdivision surface framework and techniques from terrain rendering, the resulting surface can be explored from any viewpoint while maintaining high surface fairness and interactive frame rates. We show the approximation error to be sufficiently small for several large data sets. Our system allows for adaptive simplification and provides continuous levels of detail, taking into account the local variation and distribution of the data.

[1]  Valerio Pascucci,et al.  Visualization of large terrains made easy , 2001, Proceedings Visualization, 2001. VIS '01..

[2]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[3]  William Ribarsky,et al.  Real-time, continuous level of detail rendering of height fields , 1996, SIGGRAPH.

[4]  L. Schumaker Fitting surfaces to scattered data , 1976 .

[5]  J. Hoschek,et al.  Scattered Data Interpolation , 1992 .

[6]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[7]  Maria Morandi Cecchi,et al.  A package for representing C1 interpolating surfaces: Application to the lagoon of Venice's bed , 1999, Numerical Algorithms.

[8]  Daniel Cohen-Or,et al.  Visibility and Dead‐Zones in Digital Terrain Maps , 1995, Comput. Graph. Forum.

[9]  A. James Stewart Hierarchical Visibility in Terrains , 1997, Rendering Techniques.

[10]  Daniel Cohen-Or,et al.  Incremental view-dependent multiresolution triangulation of terrain , 1997, Proceedings The Fifth Pacific Conference on Computer Graphics and Applications.

[11]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[12]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[13]  Hans-Peter Seidel,et al.  Fitting Triangular B‐Splines to Functional Scattered Data , 1996, Comput. Graph. Forum.

[14]  P. Lancaster Curve and surface fitting , 1986 .

[15]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[16]  W. Dahmen,et al.  Scattered data interpolation by bivariate C1-piecewise quadratic functions , 1990 .

[17]  Mark A. Duchaineau,et al.  ROAMing terrain: Real-time Optimally Adapting Meshes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[18]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[19]  Jie Li,et al.  Adaptive hierarchical b-spline surface approximation of large-scale scattered data , 1998, Proceedings Pacific Graphics '98. Sixth Pacific Conference on Computer Graphics and Applications (Cat. No.98EX208).

[20]  Hans Hagen,et al.  Least squares surface approximation using multiquadrics and parametric domain distortion , 1999, Comput. Aided Geom. Des..

[21]  Michel Gangnet,et al.  Shaded Display of Digital Maps , 1984, IEEE Computer Graphics and Applications.

[22]  Daniel Cohen-Or,et al.  Photo‐Realistic Imaging of Digital Terrains , 1993, Comput. Graph. Forum.

[23]  Reinhard Klein,et al.  Incremental view-dependent multiresolution triangulation of terrain , 1998 .

[24]  Suresh K. Lodha,et al.  Scattered Data Techniques for Surfaces , 1997, Scientific Visualization Conference (dagstuhl '97).

[25]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[26]  Hong Qin,et al.  D-NURBS: A Physics-Based Framework for Geometric Design , 1996, IEEE Trans. Vis. Comput. Graph..

[27]  Nicholas M. Patrikalakis,et al.  Scattered data fitting with simplex splines in two and three dimensional spaces , 1997, The Visual Computer.

[28]  Francis J. M. Schmitt,et al.  An adaptive subdivision method for surface-fitting from sampled data , 1986, SIGGRAPH.

[29]  Thomas Ertl,et al.  On-the-Fly Adaptive Subdivision Terrain , 2001, VMV.

[30]  Paolo Cignoni,et al.  Representation and visualization of terrain surfaces at variable resolution , 1997, The Visual Computer.

[31]  Frank Zeilfelder,et al.  Smooth approximation and rendering of large scattered data sets , 2001, Proceedings Visualization, 2001. VIS '01..

[32]  Yeong-Gil Shin,et al.  A Terrain Rendering Method Using Vertical Ray Coherence , 1997, Comput. Animat. Virtual Worlds.

[33]  Pia R. Pfluger,et al.  Smooth interpolation to scattered data by bivariate piecewise polynomials of odd degree , 1990, Comput. Aided Geom. Des..

[34]  David R. Forsey,et al.  Surface fitting with hierarchical splines , 1995, TOGS.

[35]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[36]  Jonathan Blow Terrain Rendering at High Levels of Detail , 2004 .

[37]  Paul Dierckx,et al.  Curve and surface fitting with splines , 1994, Monographs on numerical analysis.

[38]  Stephen A. Szygenda,et al.  Multiresolution BSP Trees Applied to Terrain, Transparency, and General Objects , 1997, Graphics Interface.