Retrieval of Canopy Closure and LAI of Moso Bamboo Forest Using Spectral Mixture Analysis Based on Real Scenario Simulation

This paper investigates the retrievals of the canopy closure and leaf area index (LAI) of the Moso bamboo forest from the Landsat Thematic Mapper data using a constrained linear spectral unmixing method. A new approach for endmember collection based on the real scenario simulation of the Moso bamboo forest is developed. Four fraction images (i.e., sunlit canopy, shaded canopy, sunlit background, and shaded background) are calculated and used to develop the canopy closure and LAI. The results show that the predicted crown closure, which was inverted from the sunlit and shaded canopies, has a good agreement with the observed crown closure (R2 = 0.725). The accuracy assessment indicates that the root mean square error (rmse) and the relative root mean square error (rmse_r) are 10% and 13.37% for the predicted crown closure, respectively. The LAI has the highest correlation coefficient with the shaded background, and it can be fitted by an exponential model (R2 = 0.497). The linear relationship between the predicted and observed LAI values is significant at a level of 99% (P <; 0.01 and R2 = 0.459), and the LAI can be predicted by the exponential model.

[1]  Derek M. Rogge,et al.  Iterative Spectral Unmixing for Optimizing Per-Pixel Endmember Sets , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Chen Xian,et al.  Carbon stock changes in bamboo stands in china over the last 50 years , 2008 .

[3]  Alex C. Lee,et al.  A LiDAR-derived canopy density model for tree stem and crown mapping in Australian forests , 2007 .

[4]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[5]  Ronald J. Hall,et al.  Ground and remote estimation of leaf area index in Rocky Mountain forest stands, Kananaskis, Alberta , 2003 .

[6]  W. Verhoef,et al.  PROSPECT+SAIL models: A review of use for vegetation characterization , 2009 .

[7]  Yu Qiang,et al.  Andances in simulation of plant photosynthetic productivity and canopy evapotranspiration , 1999 .

[8]  P. Mausel,et al.  Application of spectral mixture analysis to Amazonian land-use and land-cover classification , 2004 .

[9]  J. A. Schell,et al.  Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor] , 1973 .

[10]  J. Townshend,et al.  Beware of per-pixel characterization of land cover , 2000 .

[11]  A. Strahler,et al.  Geometric-Optical Modeling of a Conifer Forest Canopy , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Karl Fred Huemmrich,et al.  Remote Sensing of Forest Biophysical Structure Using Mixture Decomposition and Geometric Reflectance Models , 1995 .

[13]  Janet Franklin,et al.  The application of a geometric optical canopy reflectance model to semiarid shrub vegetation , 1992, IEEE Trans. Geosci. Remote. Sens..

[14]  Paul E. Lewis,et al.  MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes) , 2002, SPIE Defense + Commercial Sensing.

[15]  Zeng Yuan,et al.  OVERVIEW OF LAI/FPAR RETRIEVAL FROM REMOTELY SENSED DATA , 2004 .

[16]  S. Sommer,et al.  A fast canopy reflectance model to simulate realistic remote sensing scenarios , 2002 .

[17]  Changshan Wu,et al.  Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery , 2004 .

[18]  F. Baret,et al.  Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case study on sugar beet canopies , 2002 .

[19]  Martha C. Anderson,et al.  Utility of an image-based canopy reflectance modeling tool for remote estimation of LAI and leaf chlorophyll content at the field scale , 2009 .

[20]  Chen Xinfang A review on forest ecosystem biophysical parameter retrieval from remotely sensed data. , 2005 .

[21]  R. Houborg,et al.  Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data , 2008 .

[22]  M. Schlerf,et al.  Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .

[23]  BAMBOO ECOSYSTEM AND CARBON DIOXIDE SEQUESTRATION 1 , 2008 .

[24]  Caf Beijing STRUCTURAL DYNAMICS OF BAMBOO FOREST STANDS , 1994 .

[25]  Dar A. Roberts,et al.  Predicted distribution of visible and near-infrared radiant flux above and below a transmittant leaf , 1990 .

[26]  Weiliang Fan,et al.  Estimation of aboveground carbon stock of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest with a Landsat Thematic Mapper image , 2011 .

[27]  Jan Pisek,et al.  Algorithm for global leaf area index retrieval using satellite imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[28]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[29]  Xiaowen Li,et al.  Inversion of the Li-Strahler canopy reflectance model for mapping forest structure , 1997, IEEE Trans. Geosci. Remote. Sens..

[30]  P. Curran,et al.  LIBERTY—Modeling the Effects of Leaf Biochemical Concentration on Reflectance Spectra , 1998 .

[31]  Sylvain G. Leblanc,et al.  A four-scale bidirectional reflectance model based on canopy architecture , 1997, IEEE Trans. Geosci. Remote. Sens..

[32]  R. Latifovic,et al.  Large area forest classification and biophysical parameter estimation using the 5-Scale canopy reflectance model in Multiple-Forward-Mode , 2004 .

[33]  J. Pisek,et al.  Comparison and validation of MODIS and VEGETATION global LAI products over four BigFoot sites in North America , 2007 .

[34]  David Riaño,et al.  Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types (2003) , 2003, IEEE Trans. Geosci. Remote. Sens..

[35]  Yann Kerr,et al.  Leaf area index estimates using remotely sensed data and BRDF models in a semiarid region. , 2000 .

[36]  Sylvain G. Leblanc,et al.  A windows graphic user interface (GUI) for the five‐scale model for fast BRDF simulations , 2000 .

[37]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[38]  T. W. Ray,et al.  Nonlinear Spectral Mixing in Desert Vegetation , 1996 .

[39]  M. Batistella,et al.  Linear mixture model applied to Amazonian vegetation classification , 2003 .

[40]  D. Roberts,et al.  Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE , 2003 .

[41]  Brian R. Sturtevant,et al.  Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data , 2009 .

[42]  J. Hogg Quantitative remote sensing of land surfaces , 2004 .

[43]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[44]  Su Li-hong Generation of Three Dimensional Real Scene of Remote Sensing Pixel , 2002 .

[45]  N. Campbell,et al.  Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification , 1992 .

[46]  B. Wylie,et al.  Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands a case study , 2002 .

[47]  Ruiliang Pu,et al.  Crown closure estimation of oak savannah in a dry season with Landsat TM imagery: Comparison of various indices through correlation analysis , 2003 .

[48]  S. Jacquemoud Inversion of the PROSPECT + SAIL Canopy Reflectance Model from AVIRIS Equivalent Spectra: Theoretical Study , 1993 .

[49]  A. Strahler,et al.  Geometric-Optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[50]  Glenn J. Fitzgerald,et al.  Multiple shadow fractions in spectral mixture analysis of a cotton canopy , 2005 .

[51]  P. Teillet,et al.  On the Slope-Aspect Correction of Multispectral Scanner Data , 1982 .

[52]  D. Roberts,et al.  Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data , 1993 .

[53]  W. Cohen,et al.  An improved strategy for regression of biophysical variables and Landsat ETM+ data. , 2003 .

[54]  D. Roberts,et al.  Mapping tree and shrub leaf area indices in an ombrotrophic peatland through multiple endmember spectral unmixing , 2007 .

[55]  V. Judson Harward,et al.  Mapping forest vegetation using landsat TM imagery and a canopy reflectance model , 1994 .

[56]  Baoxin Hu,et al.  Retrieval of the canopy leaf area index in the BOREAS flux tower sites using linear spectral mixture analysis , 2004 .

[57]  Roberta E. Martin,et al.  PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments , 2008 .

[58]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modeling: The Scattering by Arbitrarily Inclined Leaves (SAIL) model , 1984 .

[59]  Weiliang Fan,et al.  Spatial heterogeneity and carbon contribution of aboveground biomass of moso bamboo by using geostatistical theory , 2010, Plant Ecology.

[60]  C. Kleinn,et al.  Estimating aboveground carbon in a catchment of the Siberian forest tundra: Combining satellite imagery and field inventory , 2009 .

[61]  M. Schaepman,et al.  Quantitative forest canopy structure assessment using an inverted geometric‐optical model and up‐scaling , 2009 .

[62]  D. Peddle Spectral Mixture Analysis and Geometric-Optical Reflectance Modeling of Boreal Forest Biophysical Structure , 1999 .

[63]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .