Borel asymptotic dimension and hyperfinite equivalence relations
暂无分享,去创建一个
[1] A. Tikuisis,et al. Nuclear dimension of simple $$\mathrm {C}^*$$-algebras , 2019, Inventiones mathematicae.
[2] T. Downarowicz,et al. Symbolic Extensions of Amenable Group Actions and the Comparison Property , 2019, Memoirs of the American Mathematical Society.
[3] David Kerr,et al. Almost Finiteness and the Small Boundary Property , 2018, Communications in Mathematical Physics.
[4] Su Gao,et al. Continuous Combinatorics of Abelian Group Actions , 2018, 1803.03872.
[5] T. Downarowicz,et al. The comparison property of amenable groups , 2017, 1712.05129.
[6] David Kerr. Dimension, comparison, and almost finiteness , 2017, 1710.00393.
[7] Clinton T. Conley,et al. Følner tilings for actions of amenable groups , 2017, 1704.00699.
[8] Clinton T. Conley,et al. Hyperfiniteness and Borel combinatorics , 2016, Journal of the European Mathematical Society.
[9] Guoliang Yu,et al. Dynamic asymptotic dimension: relation to dynamics, topology, coarse geometry, and $$C^*$$C∗-algebras , 2015, 1510.07769.
[10] A. Tikuisis,et al. Quasidiagonality of nuclear C*-algebras , 2015, 1509.08318.
[11] Su Gao,et al. Countable abelian group actions and hyperfinite equivalence relations , 2015 .
[12] Su Gao,et al. FORCING CONSTRUCTIONS AND COUNTABLE BOREL EQUIVALENCE RELATIONS , 2015, The Journal of Symbolic Logic.
[13] T. Downarowicz,et al. Tilings of amenable groups , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).
[14] S. Schneider,et al. Locally Nilpotent Groups and Hyperfinite Equivalence Relations , 2013, 1308.5853.
[15] G. Szabó. The Rokhlin dimension of topological ℤm‐actions , 2013, 1308.5418.
[16] Andrew S. Marks. A determinacy approach to Borel combinatorics , 2013, 1304.3830.
[17] G. Bell,et al. Asymptotic Dimension , 2007, math/0703766.
[18] Alain Louveau,et al. Countable Borel Equivalence Relations , 2002, J. Math. Log..
[19] Jean-Louis Tu. La conjecture de Baum-Connes pour les feuilletages moyennables , 1999 .
[20] Stevo Todorcevic,et al. BOREL CHROMATIC NUMBERS , 1999 .
[21] Benjamin Weiss,et al. Entropy and isomorphism theorems for actions of amenable groups , 1987 .
[22] M. Gromov. Groups of polynomial growth and expanding maps , 1981 .
[23] J. Feldman,et al. Ergodic equivalence relations, cohomology, and von Neumann algebras , 1975 .
[24] Hyman Bass,et al. The Degree of Polynomial Growth of Finitely Generated Nilpotent Groups , 1972 .
[25] Mikael Olsson. Dimension , 2019, CSS3 Quick Syntax Reference.
[26] Clinton T. Conley,et al. A bound on measurable chromatic numbers of locally finite Borel graphs , 2016 .
[27] Benjamin Naumann,et al. Classical Descriptive Set Theory , 2016 .
[28] Derek J. S. Robinson,et al. The Theory of Infinite Soluble Groups , 2004 .
[29] R. Dougherty,et al. The structure of hy-per nite Borel equivalence relations , 1994 .
[30] Graham A. Niblo,et al. Asymptotic invariants of infinite groups , 1993 .
[31] Theodore A. Slaman,et al. Definable functions on degrees , 1988 .
[32] Benjamin Weiss,et al. Ergodic theory of amenable group actions. I: The Rohlin lemma , 1980 .
[33] Y. Guivarc’h. Croissance polynomiale et périodes des fonctions harmoniques , 1973 .
[34] J. Wolf. Growth of finitely generated solvable groups and curvature of Riemannian manifolds , 1968 .