Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE

Based on satellite observations of Earth’s time variable gravity field from the Gravity Recovery and Climate Experiment (GRACE), it is possible to derive variations in terrestrial water storage, which includes groundwater, soil moisture, and snow. Given auxiliary information on the latter two, one can estimate groundwater storage variations. GRACE may be the only hope for groundwater depletion assessments in data-poor regions of the world. In this study, soil moisture and snow were simulated by the Global Land Data Assimilation System (GLDAS) and used to isolate groundwater storage anomalies from GRACE water storage data for the Mississippi River basin and its four major sub-basins. Results were evaluated using water level records from 58 wells set in the unconfined aquifers of the basin. Uncertainty in the technique was also assessed. The GRACE-GLDAS estimates compared favorably with the well based time series for the Mississippi River basin and the two sub-basins that are larger than 900,000 km2. The technique performed poorly for the two sub-basins that have areas of approximately 500,000 km2. Continuing enhancement of the GRACE processing methods is likely to improve the skill of the technique in the future, while also increasing the temporal resolution.RésuméA partir d’observations satellitaires du programme Gravity Recovery and Climate Experiment (GRACE), l’étude de la variation dans le temps du champ de gravité terrestre permet de déduire les variations du stock d’eau terrestre, ce qui comprend l’eau souterraine, l’humidité du sol et la neige. Les variations de stock d’eau souterraine peuvent être estimées à partir d’informations auxiliaires sur les deux autres composantes. GRACE pourrait être le seul espoir pour l’établissement des bilans d’eau souterraine dans les régions du monde où les données sont peu nombreuses. Dans cette étude concernant le bassin du fleuve Mississippi et ses quatre sous bassins principaux, l’humidité du sol et la neige ont été simulées par le modèle Global Land Data Assimilation System (GLDAS) et utilisées pour isoler les anomalies de stock d’eau souterraine à partir des données de stock d’eau du GRACE. Les résultats ont été évalués à partir d’enregistrements de niveaux piézomètriques réalisés dans 58 puits localisés dans les aquifères libres du bassin. L’incertitude liée à la technique a également été évaluée. Les estimations GRACE-GLDAS concordaient avec les chroniques de puits pour le bassin du Mississippi ainsi que pour les deux sous bassins présentant une superficie supérieure à 900,000 km2. La technique s’est avérée peu performante pour les deux sous bassins d’environ 500,000 km2. L’amélioration continue des méthodes de traitement des données du GRACE devrait à l’avenir augmenter la performance de la technique ainsi que la résolution temporelle.ResumenEs posible derivar variaciones en el almacenamiento de agua terrestre en base a observaciones de satélite del campo gravitacional temporal variable de la Tierra a partir del Experimento Clima y Recuperación de Gravedad (GRACE), el cual incluye agua subterránea, humedad del suelo, y nieve. Dada la información auxiliar de los dos últimos, uno puede estimar variaciones en almacenamiento de agua subterránea. GRACE puede ser la única esperanza para las evaluaciones de agotamiento de agua subterránea en regiones del mundo con datos pobres. En este estudio se simularon la nieve y humedad del suelo mediante el Sistema de Asimilación de Datos Globales del Terreno (GLDAS) y se usaron para aislar anomalías de almacenamiento de agua subterránea de los datos de almacenamiento de agua GRACE para la cuenca del Río Mississippi y sus cuatros sub-cuencas principales. Los resultados se evaluaron utilizando registros de niveles de agua para 58 pozos emplazados en acuíferos no confinados de la cuenca. También se evaluó la incertidumbre de la técnica. Los estimados provenientes de GLDAS-GRACE se comparan favorablemente con las series de tiempo de los pozos para la cuenca del Río Mississippi y las dos sub-cuencas cuyas áreas son mayores de 900,000 km2. La técnica se desempeñó pobremente para las dos sub-cuencas que tienen áreas de aproximadamente 500,000 km2. El mejoramiento continuo de los métodos de procesamiento GRACE es posible que mejore la habilidad de la técnica en el futuro mejorando al mismo tiempo la resolución temporal.

[1]  D. L. Peck,et al.  Water-level changes in the High Plains aquifer; predevelopment to 1991 , 1993 .

[2]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[3]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[4]  T. C. Winter,et al.  Ground Water and Surface Water: A Single Resource , 1999 .

[5]  E. Eltahir,et al.  On the asymmetric response of aquifer water level to floods and droughts in Illinois , 1999 .

[6]  Matthew Rodell,et al.  Detectability of variations in continental water storage from satellite observations of the time dependent gravity field , 1999 .

[7]  Matthew Rodell,et al.  An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE) , 2001 .

[8]  Robert E. Dickinson,et al.  The Common Land Model (CLM) , 2001 .

[9]  Matthew Rodell,et al.  The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US , 2002 .

[10]  S. Swenson,et al.  Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE) , 2003 .

[11]  R. Dickinson,et al.  The Common Land Model , 2003 .

[12]  V. L. McGuire Water-level changes in the High Plains aquifer, predevelopment to 2001, 1999 to 2000, and 2000 to 2001 , 2003 .

[13]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[14]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[15]  Sonia I. Seneviratne,et al.  Inferring changes in terrestrial water storage using ERA-40 reanalysis data: The Mississippi River Basin , 2004 .

[16]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[17]  S. Seneviratne,et al.  Basin scale estimates of evapotranspiration using GRACE and other observations , 2004 .

[18]  Matthew Rodell,et al.  Updating a Land Surface Model with MODIS-Derived Snow Cover , 2004 .

[19]  Matthew Rodell,et al.  Analysis of Multiple Precipitation Products and Preliminary Assessment of Their Impact on Global Land Data Assimilation System Land Surface States , 2005 .

[20]  C. Shum,et al.  Improved estimation of terrestrial water storage changes from GRACE , 2005 .

[21]  F. LeMoine,et al.  Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements , 2005 .

[22]  Matthew Rodell,et al.  Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land‐atmosphere water balance , 2005 .

[23]  Philippe Huybrechts,et al.  Short term mass variability in Greenland, from GRACE , 2005 .

[24]  John S. Kimball,et al.  Global Biomass Variation and Its Geodynamic Effects: 1982–98 , 2005 .

[25]  B. Tapley,et al.  Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models , 2005 .

[26]  P. Houser,et al.  Development of a hydrometeorological forcing data set for global soil moisture estimation , 2005 .

[27]  Matthew Rodell,et al.  Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates , 2005 .

[28]  Jeffrey P. Walker,et al.  A framework for assessing the potential of remote-sensed gravity to provide new insight on the hydrology of the Murray-Darling Basin , 2006 .

[29]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[30]  Ki-Weon Seo,et al.  Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time‐variable gravity observations , 2006 .

[31]  Matthew W Becker,et al.  Potential for Satellite Remote Sensing of Ground Water , 2006, Ground water.

[32]  S. Swenson,et al.  Accuracy of GRACE mass estimates , 2006 .

[33]  John Wahr,et al.  Estimating Large-Scale Precipitation Minus Evapotranspiration from GRACE Satellite Gravity Measurements , 2006 .