Spatial remapping of the visual world across saccades

Recent research has identified neurons in the visual system that remap their receptive fields before a saccade. The activity of these neurons may signal a prediction of postsaccadic visual input, derived from an efference copy of saccadic motor output. Such a prediction is often thought to underlie our perception of a stable visual world, by compensating for the shifts in retinal image that accompany each eye movement. Here we review the evidence, and conclude that prediction does not in fact play a significant role in maintaining visual stability. Instead, we consider a novel perspective in which the primary function of spatial remapping is to support three key nonperceptual processes: action control, sensorimotor adaptation and spatial memory.

[1]  Berthold Hedwig,et al.  A corollary discharge maintains auditory sensitivity during sound production , 2002, Nature.

[2]  L. Matin,et al.  The influence of saccade length on the saccadic suppression of displacement detection , 1990, Perception & psychophysics.

[3]  D. E. Irwin Memory for position and identity across eye movements. , 1992 .

[4]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[5]  K. F. Austen,et al.  Oculoparalytic Illusion : Visual-Field Dependent Spatial Mislocalizations by Humans Partially Paralyzed with Curare , 2006 .

[6]  Bruce Bridgeman,et al.  Failure to detect displacement of the visual world during saccadic eye movements , 1975, Vision Research.

[7]  Jefferson E. Roy,et al.  Dissociating Self-Generated from Passively Applied Head Motion: Neural Mechanisms in the Vestibular Nuclei , 2004, The Journal of Neuroscience.

[8]  C. Kennard,et al.  Impaired spatial working memory across saccades contributes to abnormal search in parietal neglect. , 2001, Brain : a journal of neurology.

[9]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[10]  Heiner Deubel,et al.  Adaptive Control of Saccade Metrics , 1991 .

[11]  Jeff B. Pelz,et al.  The role of exocentric reference frames in the perception of visual direction , 1995, Vision Research.

[12]  D. E. Irwin,et al.  Integration and accumulation of information across saccadic eye movements. , 1996 .

[13]  David E. Irwin,et al.  MEMORY FOR STRUCTURAL INFORMATION ACROSS EYE MOVEMENTS , 1995 .

[14]  M. Goodale,et al.  An evolving view of duplex vision: separate but interacting cortical pathways for perception and action , 2004, Current Opinion in Neurobiology.

[15]  D. Wolpert,et al.  Attenuation of Self-Generated Tactile Sensations Is Predictive, not Postdictive , 2006, PLoS biology.

[16]  Parashkev Nachev,et al.  Space re-exploration in hemispatial neglect , 2006, Neuroreport.

[17]  J. Mattingley,et al.  Impaired Working Memory for Location but not for Colour or Shape in Visual Neglect: a Comparison of Parietal and Non-Parietal Lesions , 2004, Cortex.

[18]  H. Deubel Localization of targets across saccades: Role of landmark objects , 2004 .

[19]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[20]  J. V. Gisbergen,et al.  Scatter in the metrics of saccades and properties of the collicular motor map , 1989, Vision Research.

[21]  I Daum,et al.  The role of the human thalamus in processing corollary discharge. , 2005, Brain : a journal of neurology.

[22]  O'Regan Jk,et al.  Integrating visual information from successive fixations: does trans-saccadic fusion exist? , 1983 .

[23]  K. Rayner Eye movements in reading and information processing: 20 years of research. , 1998, Psychological bulletin.

[24]  A. Treisman,et al.  Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions , 1995, Science.

[25]  J. Schoffelen,et al.  Oscillatory activity in human parietal and occipital cortex shows hemispheric lateralization and memory effects in a delayed double-step saccade task. , 2007, Cerebral cortex.

[26]  A. Fuchs,et al.  The characteristics and neuronal substrate of saccadic eye movement plasticity , 2004, Progress in Neurobiology.

[27]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[28]  R. Sperry Neural basis of the spontaneous optokinetic response produced by visual inversion. , 1950, Journal of comparative and physiological psychology.

[29]  J. Crawford,et al.  Gaze-Centered Remapping of Remembered Visual Space in an Open-Loop Pointing Task , 1998, The Journal of Neuroscience.

[30]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[31]  D. Wolpert,et al.  The cerebellum is involved in predicting the sensory consequences of action , 1999, Neuroreport.

[32]  T. Vilis,et al.  Gaze-Centered Updating of Visual Space in Human Parietal Cortex , 2003, The Journal of Neuroscience.

[33]  Curtis C Bell,et al.  Memory-based expectations in electrosensory systems , 2001, Current Opinion in Neurobiology.

[34]  Sven Panis,et al.  Transsaccadic integration of bystander locations , 2004 .

[35]  Patrik Vuilleumier,et al.  Impaired Perceptual Memory of Locations across Gaze-shifts in Patients with Unilateral Spatial Neglect , 2007, Journal of Cognitive Neuroscience.

[36]  J. Henderson,et al.  High-level scene perception. , 1999, Annual review of psychology.

[37]  J. Douglas Crawford,et al.  Optimal transsaccadic integration explains distorted spatial perception , 2003, Nature.

[38]  Parashkev Nachev,et al.  Space and the parietal cortex , 2007, Trends in Cognitive Sciences.

[39]  B. Bridgeman,et al.  Postsaccadic target blanking prevents saccadic suppression of image displacement , 1996, Vision Research.

[40]  Edward K. Vogel,et al.  The capacity of visual working memory for features and conjunctions , 1997, Nature.

[41]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[42]  A. Pouget,et al.  Multisensory spatial representations in eye-centered coordinates for reaching , 2002, Cognition.

[43]  M. Hayhoe,et al.  Reference frames in saccadic targeting , 1997, Experimental Brain Research.

[44]  A. Mack An investigation of the relationship between eye and retinal image movement in the perception of movement , 1970 .

[45]  D. Lagnado,et al.  Alexandre pouget, Jean-Christophe ducom, Jeffrey torri and Daphne bavelier (university of rochester) multisensory spatial representations in eye-centered coordinates for reaching, b1–b11 , 2002 .

[46]  C. Prablanc,et al.  Automatic control during hand reaching at undetected two-dimensional target displacements. , 1992, Journal of neurophysiology.

[47]  Jon Driver,et al.  Revisiting Previously Searched Locations in Visual Neglect: Role of Right Parietal and Frontal Lesions in Misjudging Old Locations as New , 2005, Journal of Cognitive Neuroscience.

[48]  J. O'Regan,et al.  Integrating visual information from successive fixations:Does trans-saccadic fusion exist? , 1983, Vision Research.

[49]  Eileen Kowler,et al.  The control of saccadic adaptation: implications for the scanning of natural visual scenes , 2000, Vision Research.