GPU-Based Euclidean Distance Transforms and Their Application to Volume Rendering

We present discrete 2D and 3D distance transforms based on the vector propagation algorithm by Danielsson. Like other vector propagation algorithms, the proposed method is close to exact, i.e., the error can be strictly bounded from above and is significantly smaller than one pixel. Our contribution is that the algorithm runs entirely on consumer class graphics hardware, thereby achieving a throughput of up to 96 Mpixels/s. Therefore, the proposed method can be used in a wide range of applications that rely on both high speed and high quality. The usability of our approach is demonstrated in the context of hardware-accelerated volumetric isosurface raycasting.

[1]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[2]  Phillip Colella,et al.  Two new methods for simulating photolithography development in 3D , 1996, Advanced Lithography.

[3]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[4]  Gavin S. P. Miller,et al.  Efficient algorithms for local and global accessibility shading , 1994, SIGGRAPH.

[5]  Dinesh Manocha,et al.  DiFi: Fast 3D Distance Field Computation Using Graphics Hardware , 2004, Comput. Graph. Forum.

[6]  P. Danielsson Euclidean distance mapping , 1980 .

[7]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[8]  O. Cuisenaire Distance transformations: fast algorithms and applications to medical image processing , 1999 .

[9]  Jakob Andreas Bærentzen,et al.  3D distance fields: a survey of techniques and applications , 2006, IEEE Transactions on Visualization and Computer Graphics.

[10]  Petros Maragos,et al.  Optimum design of chamfer distance transforms , 1998, IEEE Trans. Image Process..

[11]  Martin Kraus,et al.  GPU-based Real-time Discrete Euclidean Distance Transforms with Precise Error Bounds , 2009, VISAPP.

[12]  Markus H. Gross,et al.  Signed distance transform using graphics hardware , 2003, IEEE Visualization, 2003. VIS 2003..

[13]  J. Tsitsiklis Efficient algorithms for globally optimal trajectories , 1995, IEEE Trans. Autom. Control..

[14]  Stina Svensson,et al.  Digital Distance Transforms in 3D Images Using Information from Neighbourhoods up to 5×5×5 , 2002, Comput. Vis. Image Underst..

[15]  James C. Mullikin,et al.  The vector distance transform in two and three dimensions , 1992, CVGIP Graph. Model. Image Process..

[16]  Bernd Jähne,et al.  Digital Image Processing: Concepts, Algorithms, and Scientific Applications , 1991 .

[17]  Markus Oswald Denny,et al.  Algorithmic geometry via graphics hardware , 2003 .

[18]  Alexandru Telea,et al.  An Augmented Fast Marching Method for Computing Skeletons and Centerlines , 2002, VisSym.

[19]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[20]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[21]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[22]  Andreas Kolb,et al.  Fast Hierarchical 3D Distance Transforms on the GPU , 2007, Eurographics.

[23]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Mark W. Jones,et al.  Vector-City Vector Distance Transform , 2001, Comput. Vis. Image Underst..

[25]  Tiow Seng Tan,et al.  Jump flooding in GPU with applications to Voronoi diagram and distance transform , 2006, I3D '06.

[26]  Robert Strzodka,et al.  Generalized distance transforms and skeletons in graphics hardware , 2004, VISSYM'04.

[27]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[28]  D. Meiron,et al.  Efficient algorithms for solving static hamilton-jacobi equations , 2003 .

[29]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.