One-step ahead adaptive D-optimal design on a finite design space is asymptotically optimal

We study the consistency of parameter estimators in adaptive designs generated by a one-step ahead D-optimal algorithm. We show that when the design space is finite, under mild conditions the least-squares estimator in a nonlinear regression model is strongly consistent and the information matrix evaluated at the current estimated value of the parameters strongly converges to the D-optimal matrix for the unknown true value of the parameters. A similar property is shown to hold for maximum-likelihood estimation in Bernoulli trials (dose–response experiments). Some examples are presented.

[1]  Viatcheslav B. Melas Optimal designs for exponential regression , 1978 .

[2]  P. Chaudhuri,et al.  On efficient designing of nonlinear experiments , 1995 .

[3]  Eric R. Ziegel,et al.  Model-Oriented Data Analysis , 1990 .

[4]  K. Chaloner,et al.  Optimal Bayesian design applied to logistic regression experiments , 1989 .

[5]  P. Laycock,et al.  Optimum Experimental Designs , 1995 .

[6]  E. Walter,et al.  Robust experiment design via maximin optimization , 1988 .

[7]  J. Kiefer,et al.  The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.

[8]  T. Lai,et al.  Least Squares Estimates in Stochastic Regression Models with Applications to Identification and Control of Dynamic Systems , 1982 .

[9]  Hung T. Nguyen,et al.  Asymptotic Normality of Maximum Likelihood Estimators , 1989 .

[10]  H. Wynn The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .

[11]  V. Fedorov,et al.  Convex design theory 1 , 1980 .

[12]  Andrej Pázman,et al.  Simultaneous Choice of Design and Estimator in Nonlinear Regression with Parameterized Variance , 2004 .

[13]  Inchi Hu,et al.  On sequential designs in nonlinear problems , 1998 .

[14]  Changbao Wu,et al.  Asymptotic Theory of Nonlinear Least Squares Estimation , 1981 .

[15]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[16]  E. Walter,et al.  Robust experiment design via stochastic approximation , 1985 .

[17]  V. Fedorov,et al.  Adaptive designs for dose-finding based on efficacy–toxicity response , 2006 .

[18]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[19]  Tze Leung Lai,et al.  Asymptotic Properties of Nonlinear Least Squares Estimates in Stochastic Regression Models , 1994 .

[20]  Werner G. Müller,et al.  batch sequential design for a nonlinear estimation problem , 1989 .

[21]  Anthony C. Atkinson Optimum Experimental Design , 2011, International Encyclopedia of Statistical Science.

[22]  Andrej Pázman,et al.  Quantile and Probability-level Criteria for Nonlinear Experimental Design , 2007 .

[23]  Anthony C. Atkinson,et al.  Optimum Experimental Designs , 1992 .

[24]  S. Silvey,et al.  A sequentially constructed design for estimating a nonlinear parametric function , 1980 .

[25]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[26]  D. Titterington,et al.  Inference and sequential design , 1985 .

[27]  Valerii V. Fedorov,et al.  Extracting Information from the Variance Function: Optimal Design , 2001 .

[28]  Changbao Wu,et al.  Asymptotic inference from sequential design in a nonlinear situation , 1985 .

[29]  P. Mykland,et al.  Nonlinear Experiments: Optimal Design and Inference Based on Likelihood , 1993 .