Direct observation of titanium-centered octahedra in titanium–antimony–tellurium phase-change material

Phase-change memory based on Ti0.4Sb2Te3 material has one order of magnitude faster Set speed and as low as one-fifth of the Reset energy compared with the conventional Ge2Sb2Te5 based device. However, the phase-transition mechanism of the Ti0.4Sb2Te3 material remains inconclusive due to the lack of direct experimental evidence. Here we report a direct atom-by-atom chemical identification of titanium-centered octahedra in crystalline Ti0.4Sb2Te3 material with a state-of-the-art atomic mapping technology. Further, by using soft X-ray absorption spectroscopy and density function theory simulations, we identify in amorphous Ti0.4Sb2Te3 the titanium atoms preferably maintain the octahedral configuration. Our work may pave the way to more thorough understanding and tailoring of the nature of the Ti–Sb–Te material, for promoting the development of dynamic random access memory-like phase-change memory as an emerging storage-class memory to reform current memory hierarchy.

[1]  S. Elliott,et al.  Intrinsic complexity of the melt-quenched amorphous Ge2Sb2Te5memory alloy , 2011 .

[2]  H. Hng,et al.  Sb2Te3 Nanoparticles with Enhanced Seebeck Coefficient and Low Thermal Conductivity , 2010 .

[3]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[4]  A. Kotani,et al.  Theory of core level X-ray photoemission and photoabsorption in Ti compounds , 1993 .

[5]  Bo Liu,et al.  Si–Sb–Te materials for phase change memory applications , 2011, Nanotechnology.

[6]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[7]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[8]  Stanford R. Ovshinsky,et al.  Vacancy-mediated three-center four-electron bonds in GeTe-Sb 2 Te 3 phase-change memory alloys , 2013 .

[9]  D. Greenaway,et al.  Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure , 1965 .

[10]  Shen,et al.  Complete band-structure determination of the quasi-two-dimensional Fermi-liquid reference compound TiTe2. , 1996, Physical review. B, Condensed matter.

[11]  R. O. Jones,et al.  Nucleus-driven crystallization of amorphous Ge2Sb2Te5: A density functional study , 2012 .

[12]  Greg Atwood,et al.  Phase-Change Materials for Electronic Memories , 2008, Science.

[13]  M. C. Livingston A new approach to an old problem. , 1948, The Canadian nurse.

[14]  Se-Ho Lee,et al.  SiO2 doped Ge2Sb2Te5 thin films with high thermal efficiency for applications in phase change random access memory , 2011, Nanotechnology.

[15]  Noboru Yamada,et al.  From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. , 2011, Nature materials.

[16]  Dong Qian,et al.  Observation of topological order in a superconducting doped topological insulator , 2010, 1104.3881.

[17]  Michele Parrinello,et al.  First-principles study of liquid and amorphous Sb 2 Te 3 , 2010 .

[18]  Chung H. Lam,et al.  Storage Class Memory , 2010, 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology.

[19]  Noboru Yamada,et al.  Crystal structures of X‐phase in the Sb–Te binary alloy system , 2013 .

[20]  G. Ghosh The Sb-Te (antimony-tellurium) system , 1994 .

[21]  I. Tanaka,et al.  Electronic Structures and Chemical Bonding of TiX2 (X=S, Se, and Te) , 1998 .

[22]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[23]  Songlin Feng,et al.  One order of magnitude faster phase change at reduced power in Ti-Sb-Te , 2014, Nature Communications.

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  A. Walsh,et al.  Insights into the structure of the stable and metastable ( GeTe ) m ( Sb 2 Te 3 ) n compounds , 2009 .

[26]  Claudia Draxl,et al.  exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Winfried W. Wilcke,et al.  Storage-class memory: The next storage system technology , 2008, IBM J. Res. Dev..

[28]  F. Jollet,et al.  Ti 2p X-ray absorption in titanium dioxides (TiO2): the influence of the cation site environment , 1994 .

[29]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[30]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[31]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[32]  D. Cahill,et al.  Lower limit to the lattice thermal conductivity of nanostructured Bi2Te3-based materials , 2009 .

[33]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[34]  M. Breitwisch Phase Change Memory , 2008, 2008 International Interconnect Technology Conference.

[35]  J. Tominaga,et al.  Why Phase-Change Media Are Fast and Stable: A New Approach to an Old Problem , 2005 .

[36]  F. Rao,et al.  Understanding the crystallization behavior of as-deposited Ti-Sb-Te alloys through real-time radial distribution functions. , 2015, Nanoscale.

[37]  Man Young Sung,et al.  Effects of excess Sb on crystallization of δ‐phase SbTe binary thin films , 2008 .

[38]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[39]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.