Density of discriminants of cubic extensions.
暂无分享,去创建一个
[1] S. Lang. Algebraic Number Theory , 1971 .
[2] H. Steckel. Dichte von Frobeniuskörpern bei fixiertem Kernkörper. , 1983 .
[3] S. Rangachari,et al. On zeta functions of quadratic forms , 1967 .
[4] E. Landau,et al. Über die Anzahl der Gitterpunkte in geweissen Bereichen , 1912 .
[5] Henri Cohen,et al. Heuristics on class groups of number fields , 1984 .
[6] David J. Wright. The adelic zeta function associated to the space of binary cubic forms , 1985 .
[7] A. Fröhlich. Discriminants of algebraic number fields , 1960 .
[8] B. Datskovsky. The adelic zeta function associated with the space of binary cubic forms with coefficients in a function field , 1987 .
[9] H. Davenport. Multiplicative Number Theory , 1967 .
[10] H. Cohn. The density of abelian cubic fields , 1954 .
[11] Andrew Marc Baily. On the density of discriminants of quartic fields. , 1980 .
[12] Helmut Hasse,et al. Vorlesungen über Klassenkörpertheorie , 1967 .
[13] T. Shintani,et al. On zeta functions associated with prehomogeneous vector spaces. , 1972, Proceedings of the National Academy of Sciences of the United States of America.
[14] H. Davenport,et al. On the Density of Discriminants of Cubic Fields , 1969 .
[15] David J. Wright,et al. The adelic zeta function associated to the space of binary cubic forms. II: Local theory. , 1986 .
[16] H. Hasse. Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage , 1930 .