Assignment of functional activations to probabilistic cytoarchitectonic areas revisited

Probabilistic cytoarchitectonic maps in standard reference space provide a powerful tool for the analysis of structure-function relationships in the human brain. While these microstructurally defined maps have already been successfully used in the analysis of somatosensory, motor or language functions, several conceptual issues in the analysis of structure-function relationships still demand further clarification. In this paper, we demonstrate the principle approaches for anatomical localisation of functional activations based on probabilistic cytoarchitectonic maps by exemplary analysis of an anterior parietal activation evoked by visual presentation of hand gestures. After consideration of the conceptual basis and implementation of volume or local maxima labelling, we comment on some potential interpretational difficulties, limitations and caveats that could be encountered. Extending and supplementing these methods, we then propose a supplementary approach for quantification of structure-function correspondences based on distribution analysis. This approach relates the cytoarchitectonic probabilities observed at a particular functionally defined location to the areal specific null distribution of probabilities across the whole brain (i.e., the full probability map). Importantly, this method avoids the need for a unique classification of voxels to a single cortical area and may increase the comparability between results obtained for different areas. Moreover, as distribution-based labelling quantifies the "central tendency" of an activation with respect to anatomical areas, it will, in combination with the established methods, allow an advanced characterisation of the anatomical substrates of functional activations. Finally, the advantages and disadvantages of the various methods are discussed, focussing on the question of which approach is most appropriate for a particular situation.

[1]  K. Amunts,et al.  Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps , 2005, Anatomy and Embryology.

[2]  K. Amunts,et al.  Advances in cytoarchitectonic mapping of the human cerebral cortex. , 2001, Neuroimaging clinics of North America.

[3]  Simon B. Eickhoff,et al.  Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45 , 2004, NeuroImage.

[4]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[5]  K. Amunts,et al.  Multimodal architectonic mapping of human superior temporal gyrus , 2005, Anatomy and Embryology.

[6]  K. Amunts,et al.  Human V5/MT+: comparison of functional and cytoarchitectonic data , 2005, Anatomy and Embryology.

[7]  A. Braun,et al.  Activation of Broca’s area during the production of spoken and signed language: a combined cytoarchitectonic mapping and PET analysis , 2003, Neuropsychologia.

[8]  P. Morosan,et al.  Quantitative Architectural Analysis: A New Approach to Cortical Mapping , 2009, Journal of autism and developmental disorders.

[9]  Katrin Amunts,et al.  Observer‐independent analysis of high‐resolution MR images of the human cerebral cortex: In vivo delineation of cortical areas , 2007, Human brain mapping.

[10]  B. Gulyás,et al.  Neuronal correlates of real and illusory contour perception: functional anatomy with PET , 1999, The European journal of neuroscience.

[11]  Jon H Kaas,et al.  Anatomical and functional organization of somatosensory areas of the lateral fissure of the New World titi monkey (Callicebus moloch) , 2004, The Journal of comparative neurology.

[12]  Dr. Stefan Geyer The Microstructural Border Between the Motor and the Cognitive Domain in the Human Cerebral Cortex , 2004, Advances in Anatomy Embryology and Cell Biology.

[13]  A. Schleicher,et al.  Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus , 2006, The Journal of comparative neurology.

[14]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.

[15]  P. Hof,et al.  Cytoarchitecture of the human cerebral cortex: MR microscopy of excised specimens at 9.4 Tesla. , 2002, AJNR. American journal of neuroradiology.

[16]  K. Zilles,et al.  Neural activity in human primary motor cortex areas 4a and 4p is modulated differentially by attention to action. , 2002, Journal of neurophysiology.

[17]  K. Amunts,et al.  Broca's region subserves imagery of motion: A combined cytoarchitectonic and fMRI study , 2000, Human brain mapping.

[18]  Jon H Kaas,et al.  Somatosensory cortex of prosimian Galagos: Physiological recording, cytoarchitecture, and corticocortical connections of anterior parietal cortex and cortex of the lateral sulcus , 2003, The Journal of comparative neurology.

[19]  Leslie G. Ungerleider,et al.  Dominance of the right hemisphere and role of area 2 in human kinesthesia. , 2005, Journal of neurophysiology.

[20]  K. Zilles,et al.  Somatotopy and Attentional Modulation of the Human Parietal and Opercular Regions , 2004, The Journal of Neuroscience.

[21]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[22]  A. Schleicher,et al.  The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. , 2006, Cerebral cortex.

[23]  H. Abdi The General Linear Model , 2009 .

[24]  A. Schleicher,et al.  High‐resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex , 2005, Human brain mapping.

[25]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[26]  A. Friederici,et al.  BA 44 in Broca's area supports syntactic gender decisions in language production , 2006, Neuroreport.

[27]  K. Worsley Developments in Random Field Theory , 2003 .

[28]  Alan C. Evans,et al.  Anatomical mapping of functional activation in stereotactic coordinate space , 1992, NeuroImage.

[29]  B. Gulyás,et al.  Perceptual segregation of overlapping shapes activates posterior extrastriate visual cortex in man , 2002, Experimental Brain Research.

[30]  K. Amunts,et al.  The importance of seeing it coming: a functional magnetic resonance imaging study of motion-in-depth towards the human observer , 2002, Neuroscience.

[31]  G. Orban,et al.  Observing Others: Multiple Action Representation in the Frontal Lobe , 2005, Science.

[32]  T. Paus,et al.  Brain networks involved in viewing angry hands or faces. , 2006, Cerebral cortex.

[33]  D. Salat,et al.  Detection of entorhinal layer II using Tesla magnetic resonance imaging , 2005 .

[34]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[35]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[36]  G. Rizzolatti,et al.  Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey , 1991, The Journal of comparative neurology.

[37]  K. Amunts,et al.  Identifying human parieto‐insular vestibular cortex using fMRI and cytoarchitectonic mapping , 2006, Human brain mapping.

[38]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[39]  J. Mazziotta,et al.  Brain Mapping: The Methods , 2002 .

[40]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[41]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[42]  A. Schleicher,et al.  Ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas , 2007, Human brain mapping.

[43]  M. Jackson,et al.  Neural activity in SII modifies sensory evoked potentials in SI in awake rats , 1998 .

[44]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[45]  K. Amunts,et al.  The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. , 2006, Cerebral cortex.

[46]  K. Amunts,et al.  Broca's region: from action to language. , 2005, Physiology.

[47]  K. Zilles,et al.  Illusory Arm Movements Activate Cortical Motor Areas: A Positron Emission Tomography Study , 1999, The Journal of Neuroscience.

[48]  K. Amunts,et al.  The role of the left Brodmann's areas 44 and 45 in reading words and pseudowords. , 2005, Brain research. Cognitive brain research.

[49]  G. Rizzolatti,et al.  Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey , 1991, The Journal of comparative neurology.

[50]  Simon B. Eickhoff,et al.  Analysis of neuroreceptor PET-data based on cytoarchitectonic maximum probability maps: a feasibility study , 2005, Anatomy and Embryology.

[51]  Gereon R Fink,et al.  The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. , 2007, Cerebral cortex.

[52]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[53]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[54]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[55]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[56]  Simon B. Eickhoff,et al.  Segregation of visceral and somatosensory afferents: An fMRI and cytoarchitectonic mapping study , 2006, NeuroImage.

[57]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[58]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[59]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.