The Rapidly Flaring Afterglow of the Very Bright and Energetic GRB 070125

We report on multiwavelength observations, ranging from X-ray to radio wave bands, of the IPN-localized gamma-ray burst GRB 070125. Spectroscopic observations reveal the presence of absorption lines due to O I, Si II, and C IV, implying a likely redshift of z = 1.547. The well-sampled light curves, in particular from 0.5 to 4 days after the burst, suggest a jet break at 3.7 days, corresponding to a jet opening angle of ~7.0°, and implying an intrinsic GRB energy in the 1-10,000 keV band of around Eγ = (6.3–6.9) × 1051 ergs (based on the fluences measured by the gamma-ray detectors of the IPN). GRB 070125 is among the brightest afterglows observed to date. The SED implies a host extinction of AV < 0.9 mag . Two rebrightening episodes are observed, one with excellent time coverage, showing an increase in flux of 56% in ~8000 s. The evolution of the afterglow light curve is achromatic at all times. Late-time observations of the afterglow do not show evidence for emission from an underlying host galaxy or supernova. Any host galaxy would be subluminous, consistent with current GRB host galaxy samples. Evidence for strong Mg II absorption features is not found, which is perhaps surprising in view of the relatively high redshift of this burst and the high likelihood for such features along GRB-selected lines of sight.

Xinyu Dai | Graziella Pizzichini | David N. Burrows | Eric Bellm | Jason X. Prochaska | Judith L. Racusin | Alexei V. Filippenko | Jinsong Deng | Warren R. Brown | G. C. Anupama | Weikang Zheng | D. A. Kann | Yuji Urata | Carl W. Hergenrother | Cullen Blake | John R. Thorstensen | Andrew S. Fruchter | D. Alexander Kann | Joshua B. Haislip | Giuseppe Greco | Dieter H. Hartmann | Kevin Hurley | Corrado Bartolini | Kuntal Misra | Emilio E. Falco | B. C. Bhatt | Peter W. A. Roming | Domenico Nanni | Adalberto Piccioni | Rhaana L. C. Starling | Alexander J. van der Horst | Liping Xin | Yulei Qiu | Jianyan Wei | Elisabetta Maiorano | J. Thorstensen | C. Blake | J. Prochaska | A. Fruchter | E. Palazzi | R. Starling | Wei Zheng | D. Burrows | G. Greco | E. Bellm | J. Haislip | D. Reichart | Y. Urata | A. Filippenko | E. Falco | P. Milne | Weidong Li | K. Hurley | J. Racusin | G. Anupama | N. Kuin | D. Hartmann | M. Nysewander | A. Piccioni | B. Bhatt | S. Klose | R. Wijers | P. Roming | E. Maiorano | G. Williams | A. Horst | N. Mirabal | C. Bartolini | A. Guarnieri | J. Halpern | X. Fan | L. Jiang | X. Dai | G. Bryngelson | C. Hergenrother | Weidong Li | Eliana Palazzi | Jules P. Halpern | Jianyan Wei | X. Fan | Nestor Mirabal | N. P. M. Kuin | Peter A. Milne | Y. Qiu | Ralph A. M. J. Wijers | A. Updike | K. Misra | Jin-song Deng | G. Pizzichini | Adriano Guarnieri | G. Grant Williams | Sylvio Klose | L. Xin | L. Jiang | Adria C. Updike | Melissa C. Nysewander | Dan Starr | Federica Terra | Dan E. Reichart | Hala A. Eid | Ginger Bryngelson | Jason Puls | R. C. Goldthwaite | D. Nanni | J. Puls | F. Terra | D. Starr

[1]  R. Salvaterra,et al.  Testing reionization with gamma-ray burst absorption spectra , 2007, 0710.1303.

[2]  E. Rol,et al.  Gamma-Ray Burst Afterglows as Probes of Environment and Blast Wave Physics. II. The Distribution of p and Structure of the Circumburst Medium , 2007, 0704.3718.

[3]  J. Prochaska,et al.  On the Nature of Velocity Fields in High-z Galaxies , 2007, astro-ph/0703701.

[4]  C. Blake,et al.  The Troublesome Broadband Evolution of GRB 061126: Does a Gray Burst Imply Gray Dust? , 2007, astro-ph/0703538.

[5]  P. B. Cameron,et al.  GRB 070125: The First Long-Duration Gamma-Ray Burst in a Halo Environment , 2007, 0712.2828.

[6]  F. Pedichini,et al.  Go Long, Go Deep: Finding Optical Jet Breaks for Swift-Era GRBs with the LBT , 2007, 0712.2239.

[7]  N. Kuin,et al.  The measurement errors in the Swift-UVOT and XMM-OM , 2007, 0709.1208.

[8]  M. J. Page,et al.  Photometric calibration of the Swift ultraviolet/optical telescope , 2007, 0708.2259.

[9]  E. Rol,et al.  GRB 060206 and the quandary of achromatic breaks in afterglow light curves , 2007, 0706.1188.

[10]  P. Jakobsson,et al.  Very Different X-Ray-to-Optical Column Density Ratios in γ-Ray Burst Afterglows: Ionization in GRB Environments , 2007, astro-ph/0702537.

[11]  A. J. van der Horst,et al.  Gamma-Ray Burst Afterglows as Probes of Environment and Blast Wave Physics. I. Absorption by Host-Galaxy Gas and Dust , 2006, astro-ph/0610899.

[12]  E. Nakar,et al.  Smooth light curves from a bumpy ride: relativistic blast wave encounters a density jump , 2006, astro-ph/0606011.

[13]  J. S. Ollerman,et al.  VERY DIFFERENT X-RAY TO OPTICAL COLUMN DENSITY RATIOS INγ-RAY BURST AFTERGLOWS: IONISATION IN GRB ENVIRONMENTS , 2007 .

[14]  Sandra Savaglio,et al.  Rapid-response mode VLT/UVES spectroscopy of GRB 060418. Conclusive evidence for UV pumping from the time evolution of Fe II and Ni II excited- and metastable-level populations , 2006 .

[15]  P. Schady,et al.  Dust and gas in the local environments of gamma-ray bursts , 2006, astro-ph/0702122.

[16]  S. Savaglio,et al.  GRBs as cosmological probes—cosmic chemical evolution , 2006, astro-ph/0609489.

[17]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[18]  E. H. Gudmundsson,et al.  Energy Injection in Gamma-Ray Burst Afterglow Models , 2006, astro-ph/0605299.

[19]  E. Rol,et al.  The GRB 060218/SN 2006aj event in the context of other gamma-ray burst supernovae , 2006, astro-ph/0605058.

[20]  E. Ramirez-Ruiz,et al.  Gamma-Ray Bursts in the Swift Era , 2009, 0909.1531.

[21]  J. R. Thorstensen,et al.  GRB 060218/SN 2006aj: A Gamma-Ray Burst and Prompt Supernova at z = 0.0335 , 2006, astro-ph/0603686.

[22]  D. A. Kann,et al.  An optical supernova associated with the X-ray flash XRF 060218 , 2006, Nature.

[23]  C. Conselice,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[24]  Takashi Hattori,et al.  An optical spectrum of the afterglow of a γ-ray burst at a redshift of z = 6.295 , 2006, Nature.

[25]  M. Moles,et al.  A photometric redshift of z = 6.39 ± 0.12 for GRB 050904 , 2006, Nature.

[26]  Xiaohui Fan,et al.  Observational Constraints on Cosmic Reionization , 2006, astro-ph/0602375.

[27]  D. A. Kann,et al.  Signatures of Extragalactic Dust in Pre-Swift GRB Afterglows , 2005, astro-ph/0512575.

[28]  E. L. Robinson,et al.  No universality for the electron power-law index (p) in gamma-ray bursts and other relativistic sources , 2005, astro-ph/0512489.

[29]  Kentaro Aoki,et al.  Implications for Cosmic Reionization from the Optical Afterglow Spectrum of the Gamma-Ray Burst 050904 at z = 6.3 , 2005, astro-ph/0512154.

[30]  E. Berger,et al.  Spectroscopy of GRB 050505 at z = 4.275: A log N(H I) = 22.1 DLA Host Galaxy and the Nature of the Progenitor , 2005, astro-ph/0511498.

[31]  A. Loeb,et al.  High-Redshift Gamma-Ray Bursts from Population III Progenitors , 2005, astro-ph/0509303.

[32]  J. Bloom,et al.  The Calibration of the Swift UVOT Optical Observations: A Recipe for Photometry , 2005, astro-ph/0505504.

[33]  J. Kotoku,et al.  Development of the HXD-II wide-band all-sky monitor onboard Astro-E2 , 2005, IEEE Transactions on Nuclear Science.

[34]  K. Pedersen,et al.  A Mean Redshift of 2.8 for Swift gamma - ray bursts , 2005, astro-ph/0509888.

[35]  L. A. Antonelli,et al.  GRB 021004 modelled by multiple energy injections , 2005, astro-ph/0506544.

[36]  J. M. Castro Cerón,et al.  On the Afterglow and Host Galaxy of GRB 021004: A Comprehensive Study with the Hubble Space Telescope , 2005, astro-ph/0506101.

[37]  James H. Burge,et al.  90prime: a prime focus imager for the Steward Observatory 90-in. telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[38]  G. Ghirlanda,et al.  The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their νFν Spectrum , 2004, astro-ph/0405602.

[39]  L. A. Antonelli,et al.  SN 2003lw and GRB 031203: A Bright Supernova for a Faint Gamma-Ray Burst , 2004, astro-ph/0405449.

[40]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[41]  S. Klose,et al.  A Systematic Analysis of Supernova Light in Gamma-Ray Burst Afterglows , 2003, astro-ph/0311610.

[42]  Bing Zhang,et al.  Gamma-Ray Bursts: Progress, Problems & Prospects , 2003, astro-ph/0311321.

[43]  Y. Oren,et al.  Polarization and Light-Curve Variability: The “Patchy-Shell” Model , 2003, astro-ph/0310236.

[44]  The collimation – corrected GRB energies correlate with the peak energy of their νF ν spectrum , 2004 .

[45]  E. O. Ofek,et al.  The Detailed Optical Light Curve of GRB 030329 , 2003, astro-ph/0312594.

[46]  Tsvi Piran,et al.  Astrophysics: refreshed shocks from a γ-ray burst , 2003, Nature.

[47]  A. A. Kaas,et al.  Evolution of the polarization of the optical afterglow of the γ-ray burst GRB030329 , 2003, Nature.

[48]  M. Uemura,et al.  Structure in the early afterglow light curve of the γ-ray burst of 29 March 2003 , 2003, Nature.

[49]  S. Djorgovski,et al.  The bright optical afterglow of the nearby γ-ray burst of 29 March 2003 , 2003, Nature.

[50]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[51]  Ryan Chornock,et al.  The Katzman Automatic Imaging Telescope Gamma‐Ray Burst Alert System, and Observations of GRB 020813 , 2003, astro-ph/0305027.

[52]  T. Piran,et al.  The Variable Light Curve of GRB 030329: The Case for Refreshed Shocks , 2003, astro-ph/0304563.

[53]  J. Granot,et al.  Linear Polarization in Gamma-Ray Bursts: The Case for an Ordered Magnetic Field , 2003, astro-ph/0304286.

[54]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[55]  J. Thorstensen,et al.  GRB 021004: A Possible Shell Nebula around a Wolf‐Rayet Star Gamma‐Ray Burst Progenitor , 2003, astro-ph/0312178.

[56]  A. Gal-Yam,et al.  Early optical emission from the γ-ray burst of 4 October 2002 , 2003, Nature.

[57]  Taichi Kato,et al.  Discovery of a Short Plateau Phase in the Early Evolution of a Gamma-Ray Burst Afterglow , 2003, astro-ph/0303119.

[58]  D. Frail,et al.  Gamma-Ray Burst Energetics and the Gamma-Ray Burst Hubble Diagram: Promises and Limitations , 2003, astro-ph/0302210.

[59]  T. Grav,et al.  The Unusual Optical Afterglow of the Gamma-Ray Burst GRB 021004: Color Changes and Short-Timescale Variability , 2002, astro-ph/0211130.

[60]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[61]  S. B. Pandey,et al.  Optical observations of the bright long duration peculiar GRB 021004 afterglow , 2002 .

[62]  Bohdan Paczynski,et al.  Small-telescope astronomy on global scales : IAU Colloquium 183, Proceedings of a Colloquium held in Kenting, Taiwan 4-8 January 2001 , 2001 .

[63]  Alexei V. Filippenko,et al.  The Lick Observatory Supernova Search with the Katzman Automatic Imaging Telescope , 2001 .

[64]  C. Steidel,et al.  Low- and High-Ionization Absorption Properties of Mg II Absorption-selected Galaxies at Intermediate Redshifts. II. Taxonomy, Kinematics, and Galaxies , 2000, astro-ph/0005586.

[65]  A. Fruchter,et al.  The Near-Infrared and Multiwavelength Afterglow of GRB 000301C , 2000, astro-ph/0004057.

[66]  Kristian D. Kennaway International Journal of Modern Physics a C World Scientific Publishing Company , 2000 .

[67]  Tsvi Piran,et al.  Jets in Gamma-Ray Bursts , 1999 .

[68]  T. Piran,et al.  Jets in Gamma-Ray Bursts , 1999, astro-ph/9903339.

[69]  ApJ, in press , 1999 .

[70]  M. C. Begam,et al.  An unusual supernova in the error box of the γ-ray burst of 25 April 1998 , 1998, Nature.

[71]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[72]  J. Hjorth,et al.  The Supernova-Gamma-Ray Burst Connection , 1998, astro-ph/9806212.

[73]  M. C. Begam,et al.  Discovery of the peculiar supernova 1998bw in the error box of GRB 980425 , 1998, astro-ph/9806175.

[74]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[75]  R. Sari The Observed Size and Shape of Gamma-Ray Burst Afterglow , 1997, astro-ph/9709300.

[76]  D. Frail,et al.  The radio afterglow from the γ-ray burst of 8 May 1997 , 1997, Nature.

[77]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[78]  S. Djorgovski,et al.  Spectral constraints on the redshift of the optical counterpart to the γ-ray burst of 8 May 1997 , 1997, Nature.

[79]  L. A. Antonelli,et al.  Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997 , 1997, Nature.

[80]  J. Goodman Radio scintillation of gamma-ray-burst afterglows , 1997, astro-ph/9706084.

[81]  L. A. Antonelli,et al.  Discovery of the X-Ray Afterglow of the Gamma-Ray Burst of February 28 1997 , 1997, astro-ph/9706065.

[82]  C. Kouveliotou,et al.  Transient optical emission from the error box of the γ-ray burst of 28 February 1997 , 1997, Nature.

[83]  H. M. Antia,et al.  Bulletin of the Astronomical Society of India , 1996 .

[84]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[85]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[86]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[87]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[88]  Richard A. Perley,et al.  Radio Interferometry: Theory, Techniques, and Applications , 1991 .

[89]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[90]  J. Graham,et al.  UBVRI STANDARD STARS IN THE E-REGIONS. , 1982 .

[91]  D. Brownlee Interstellar dust , 1980, Nature.

[92]  R. Klebesadel,et al.  Observations of Gamma-Ray Bursts of Cosmic Origin , 1973 .

[93]  Space Science Reviews , 1962, Nature.